精英家教网 > 高中数学 > 题目详情
12.在单调递增的等差数列{an}中,若a3=1,a2a4=$\frac{3}{4}$,则a1=(  )
A.-1B.0C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 由等差数列的通项公式a3=a1+2d=1,(a1+d)(a1+3d)=$\frac{3}{4}$,即可得出结论.

解答 解:在等差数列{an}中,a3=1,a2a4=$\frac{3}{4}$,则由等差数列的通项公式a3=a1+2d=1,(a1+d)(a1+3d)=$\frac{3}{4}$,
∴d=$\frac{1}{2}$,a1=0
故选:B.

点评 本题主要考查等差数列的定义和性质,等差数列的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{x+a}{e^x}$.
(Ⅰ)若f(x)在区间(-∞,2)上为单调递增函数,求实数a的取值范围;
(Ⅱ)若a=0,x0<1,设直线y=g(x)为函数f(x)的图象在x=x0处的切线,求证:f(x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=cos2$\frac{ωx}{2}$+$\sqrt{3}$sin$\frac{ωx}{2}$cos$\frac{ωx}{2}$-$\frac{1}{2}$(ω>0)的最小正周期为π.
(Ⅰ)求ω的值及函数f(x)的最大值和最小值;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a,b,c∈R,那么下列命题中正确的是(  )
A.若a<b,则ac2<bc2B.若a>b>0,c<0,则$\frac{c}{a}<\frac{c}{b}$
C.若a>b,则(a+c)2>(b+c)2D.若ab>0,则$\frac{a}{b}+\frac{b}{a}≥2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知P是直线3x+4y-10=0上的动点,PA,PB是圆x2+y2-2x+4y+4=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数a>1,0<b<1,则函数f(x)=ax+x-b的零点所在的区间是(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{{x}^{2}+4x+1,x≤0}\end{array}\right.$,若关于x的方程f2(x)-bf(x)+c=0(b,c∈R)有8个不同的实数根,则由点(b,c)确定的平面区域的面积为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线F的顶点为坐标原点,焦点为F(0,1).
(1)求抛物线F的方程;
(2)若点P为抛物线F的准线上的任意一点,过点P作抛物线F的切线PA与PB,切点分别为A,B.求证:直线AB恒过某一定点;
(3)分析(2)的条件和结论,反思其解题过程,再对命题(2)进行变式和推广,请写出一个你发现的真命题,不要求证明(说明:本小题将根据所给出的命题的正确性和一般性酌情给分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求证:对任意α,β有cos(α+β)=cosαcosβ-sinαsinβ和cos2α=2cos2α-1.

查看答案和解析>>

同步练习册答案