精英家教网 > 高中数学 > 题目详情
17.已知实数a>1,0<b<1,则函数f(x)=ax+x-b的零点所在的区间是(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

分析 由a>1可得函数f(x)的单调性,然后由已知判断f(-1)、f(0)的符号,最后由函数零点存在性定理得答案.

解答 解:∵a>1,
∴函数f(x)=ax+x-b为增函数,
又0<b<1,
∴f(-1)=$\frac{1}{a}$-1-b<0,f(0)=1-b>0,
∴函数f(x)=ax+x-b在(-1,0)内有零点,
故选:B.

点评 本题考查了函数零点的判定定理,考查了指数函数的单调性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知等差数列{an}的前9项的和为27,则${2^{{a_2}+{a_8}}}$=(  )
A.16B.2C.6 4D.128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数y=cosx的图象向右平移$\frac{π}{6}$个单位长度,再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是(  )
A.$y=cos(\frac{1}{2}x-\frac{π}{6})$B.$y=cos(\frac{1}{2}x-\frac{π}{3})$C.$y=cos(2x-\frac{π}{6})$D.$y=cos(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC中,角A,B,C所对的边分别为a,b,c,若sinA:sinB:sinC=1:2:$\sqrt{3}$,则角C=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在单调递增的等差数列{an}中,若a3=1,a2a4=$\frac{3}{4}$,则a1=(  )
A.-1B.0C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}$(其中θ为参数),点M是曲线C1上的动点,点P在曲线C2上,且满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$.
(Ⅰ)求曲线C2的普通方程;
(Ⅱ)以原点O为极点,x轴的正半轴为极轴建立极坐标系,射线θ=$\frac{π}{3}$,与曲线C1,C2分别交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线y=$\frac{1-2x}{{x}^{2}}$在点(-1,3)处的切线方程为(  )
A.y=4x-7B.y=4x+7C.y=-4x-1D.y=-4x+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知O是平面ABC内的一定点,P是平面ABC内的一动点,($\overrightarrow{PB}$-$\overrightarrow{PC}$)•($\overrightarrow{OB}$+$\overrightarrow{OC}$)=($\overrightarrow{PC}$-$\overrightarrow{PA}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)=0,则O为△ABC的(  )
A.内心B.外心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}满足an+2=an+1-an,a1=1,则a100=-1.

查看答案和解析>>

同步练习册答案