精英家教网 > 高中数学 > 题目详情
设函数f(x)=
1
2
x-
1
4
sinx-
3
4
cosx.
(1)试判定函数f(x)的单调性,并说明理由;    
(2)已知f′(x)为函数f(x)的导函数,且f′(B)=
3
4
且B为锐角,求sin(B+10°)[1-
3
tan(B-10°)]的值.
考点:利用导数研究函数的单调性,两角和与差的正弦函数
专题:导数的综合应用,三角函数的求值
分析:(1)求导,得到导数恒大于等于0,故得到函数为增函数,
(2)先求出B的大小,再利用三角函数的和差公式和诱导公式化简即可求出值.
解答: 解:∵f(x)=
1
2
x-
1
4
sinx-
3
4
cosx.
∴f′(x)=
1
2
-
1
4
cosx+
3
4
sinx=
1
2
sin(x-
π
6
)+
1
2
≥0,
∴函数f(x)在其定义域内单调递增.
(2)∵f′(B)=
3
4
且B为锐角,
1
2
sin(B-
π
6
)+
1
2
=
3
4

∴sin(B-
π
6
)=
1
2

∴B-
π
6
=
π
6

∴B=60°,
∴sin(B+10°)[1-
3
tan(B-10°)]=sin70°(1-
3
tan50°)
=sin70°(1-
3
sin50°
cos50°
)=sin70°
cos50°-
3
sin50
cos50°
=sin70°
2cos110°
cos50°
=-
sin140°
cos50°
=-1
点评:本题主要考查了导数与函数单调性的关系以及三角函数中的和差公式,诱导公式,培养科学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,设P是圆O:x2+y2=a2上的任意一点,过点P与x轴垂直的直线与x轴交于点Q,点M满足a
QM
=b
QP
(a>b>c).当点P在圆O上运动时,记点M的轨迹为曲线C.
(1)求曲线C的方程,并指出曲线C为何种圆锥曲线;
(2)若S(m,n)为圆O上任意一点,求与直线mx+ny=1恒相切的定圆的方程;
(3)若S(m,n)为曲线C上的任意一点,且A(1,
3
2
),B(2,0)在曲线C上,请直接写出与直线mx+ny=1恒相切的定曲线的方程(不必说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,sin(A+B)=2sin(A-B).
(1)若B=
π
6
,求A;
(2)若tanA=2,求tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg[a2x+2(ab)x-b2x+1](a>0,b>0),求使f(x)>0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
1
4
,a2=
3
4
,2an=an+1+an-1(n≥2,n∈N),数列{bn}满足:b1<0,3bn-bn-1=n(n≥2,n∈R),数列{bn}的前n项和为Sn
(Ⅰ)求证:数列{bn-an}为等比数列;
(Ⅱ)求证:数列{bn}为递增数列;
(Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线x-y+2
2
=0的距离为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在斜率为k(k≠0),且过定点Q(0,2)的直线l,使l与椭圆交于两个不同的点M,N,且|AM|=|AN|?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{bn}满足b1=2,bn=
bn-1
1+bn-1
,(n≥2,n∈N+
(1)求数列{bn}的通项公式;
(2)求数列{
2n+1
bn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x是小于9的正整数},B={1,2,3},C={3,4,5,6}.求:
(1)B∩C;
(2)∁A(B∪C)

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义域为R的奇函数f(x)满足f(x-2)=-f(x),且在[0,1]上是增函数,则f(40)
 
f(15)(填<,>).

查看答案和解析>>

同步练习册答案