精英家教网 > 高中数学 > 题目详情
14.已成椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$.其右顶点与上顶点的距离为$\sqrt{5}$,过点P(0,2)的直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)设M是AB中点,且Q点的坐标为($\frac{2}{5}$,0),当QM⊥AB时,求直线l的方程.

分析 (1)椭圆的离心率为$\frac{\sqrt{3}}{3}$.其右顶点与上顶点的距离为$\sqrt{5}$,列出方程组,求出a=$\sqrt{3}$,b=$\sqrt{2}$,由此能求出椭圆C的方程.
(2)若直线l的斜率不存在,直线方程为x=0;若直线l的斜率存在,设其方程为y=kx+2,与椭圆方程联立$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,得(2+3k2)x2+12kx+6=0,由此利用根的判别式、韦达定理、直线垂直,结合已知条件能求出直线l的方程.

解答 解:(1)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$.
其右顶点与上顶点的距离为$\sqrt{5}$,
∴由题意知:$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{3}}{3}}\\{{a}^{2}+{b}^{2}=5}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=$\sqrt{3}$,b=$\sqrt{2}$,
∴椭圆C的方程为:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.
(2)①若直线l的斜率不存在,此时M为原点,满足QM⊥AB,∴方程为x=0;
②若直线l的斜率存在,设其方程为y=kx+2,A(x1,y1),B(x2,y2),
将直线方程与椭圆方程联立$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,得(2+3k2)x2+12kx+6=0,
△=72k2-48>0,${x}_{1}+{x}_{2}=\frac{-12k}{2+3{k}^{2}}$,
设M(x0,y0),则${x}_{0}=\frac{-6k}{2+3{k}^{2}}$,${y}_{0}=k•\frac{-6k}{2+3{k}^{2}}+2=\frac{4}{2+3{k}^{2}}$,
由QM⊥AB,知$\frac{{y}_{0}}{{x}_{0}-\frac{2}{5}}•k=-1$,化简得3k2+5k+2=0,
解得k=-1或k=-$\frac{2}{3}$,将结果代入△=72k2-48>0验证,舍掉k=-$\frac{2}{3}$,
此时,直线l的方程为x+y-2=0,
综上所述,直线l的方程为x=0或x+y-2=0.

点评 本题考查椭圆方程的求法,考查直线方程的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、直线垂直、椭圆等知识点的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.等差数列的第5项a5=8,且a1+a2+a3=6,则d=(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点P是△ABC的中位线EF上任意一点,且EF∥BC,实数x,y满足$\overrightarrow{PA}+x\overrightarrow{PB}+y\overrightarrow{PC}=\overrightarrow 0$,设△ABC,△PBC,△PCA,△PAB的面积分别为S,S1,S2,S3,记$\frac{S_1}{S}={λ_1}$,$\frac{S_2}{S}={λ_2}$,$\frac{S_3}{S}={λ_3}$,则λ2•λ3取最大值时,3x+y的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.四个数40.2,30.5,30.4,log0.40.5的大小顺序是(  )
A.${4^{0.2}}<{3^{0.4}}<{log_{0.4}}0.5<{3^{0.5}}$B.${log_{0.4}}0.5<{3^{0.4}}<{4^{0.2}}<{3^{0.5}}$
C.${log_{0.4}}0.5<{3^{0.5}}<{4^{0.2}}<{3^{0.4}}$D.${log_{0.4}}0.5<{4^{0.2}}<{3^{0.4}}<{3^{0.5}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,矩形ACEF和等边三角形ABC中,AC=2,CE=1,平面ABC⊥平面ACEF.
(1)在EF上找一点M,使BM⊥AC,并说明理由;
(2)在(1)的条件下,求平面ABM与平面CBE所成锐二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求值:
(I)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-9.6)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(1.5)^{-2}}$;
(II) $lg14-2lg\frac{7}{3}+lg7-lg18$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C上的点到点F(0,1)的距离比它到直线y=-3的距离小2.
(1)求曲线C的方程;
(2)过点F且斜率为k的直线l交曲线C于A,B两点,交圆F:x2+(y-1)2=1于M,N两点(A,M两点相邻).
①若$\overrightarrow{BF}$=λ$\overrightarrow{BA}$,当λ∈[$\frac{1}{2}$,$\frac{2}{3}$]时,求k的取值范围;
②过A,B两点分别作曲线C的切线l1,l2,两切线交于点P,求△AMP与△BNP面积之积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知偶函数f(x)的定义域为R,且在(-∞,0)上是增函数,则f(-$\frac{3}{4}$)与f(a2-a+1)的大小关系为(  )
A.f(-$\frac{3}{4}$)<f(a2-a+1)B.f(-$\frac{3}{4}$)>f(a2-a+1)C.f(-$\frac{3}{4}$)≤f(a2-a+1)D.f(-$\frac{3}{4}$)≥f(a2-a+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx+$\frac{a}{x}$(a∈R).
(1)当a=0时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)求证:当a≥1,f(x)≥1.

查看答案和解析>>

同步练习册答案