6£®ÒÑÖªÇúÏßCÉϵĵ㵽µãF£¨0£¬1£©µÄ¾àÀë±ÈËüµ½Ö±Ïßy=-3µÄ¾àÀëС2£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£»
£¨2£©¹ýµãFÇÒбÂÊΪkµÄÖ±Ïßl½»ÇúÏßCÓÚA£¬BÁ½µã£¬½»Ô²F£ºx2+£¨y-1£©2=1ÓÚM£¬NÁ½µã£¨A£¬MÁ½µãÏàÁÚ£©£®
¢ÙÈô$\overrightarrow{BF}$=¦Ë$\overrightarrow{BA}$£¬µ±¦Ë¡Ê[$\frac{1}{2}$£¬$\frac{2}{3}$]ʱ£¬ÇókµÄȡֵ·¶Î§£»
¢Ú¹ýA£¬BÁ½µã·Ö±ð×÷ÇúÏßCµÄÇÐÏßl1£¬l2£¬Á½ÇÐÏß½»ÓÚµãP£¬Çó¡÷AMPÓë¡÷BNPÃæ»ýÖ®»ýµÄ×îСֵ£®

·ÖÎö £¨1£©Óɶ¯µãP£¨x£¬y£©µ½F£¨0£¬1£©µÄ¾àÀë±Èµ½Ö±Ïßy=-3µÄ¾àÀëС2£¬¿ÉµÃ¶¯µãP£¨x£¬y£©µ½F£¨0£¬1£©µÄ¾àÀëµÈÓÚËüµ½Ö±Ïßy=-3µÄ¾àÀ룬ÀûÓÃÅ×ÎïÏߵ͍Ò壬¼´¿ÉÇ󶯵ãPµÄ¹ì¼£WµÄ·½³Ì£»
£¨2£©¢ÙÓÉÌâÒâÖª£¬Ö±Ïßl·½³ÌΪy=kx+1£¬´úÈëÅ×ÎïÏßµÃx2-4kx-4=0£¬ÀûÓÃÌõ¼þ£¬½áºÏΤ´ï¶¨Àí£¬¿ÉµÃ4k2+2=$\frac{1}{¦Ë}-1+\frac{1}{\frac{1}{¦Ë}-1}$£¬ÀûÓú¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉÇókµÄȡֵ·¶Î§£»
¢ÚÇó³öÖ±ÏßPA£¬PBµÄ·½³Ì£¬±íʾ³öÃæ»ý£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬¶¯µãP£¨x£¬y£©µ½F£¨0£¬1£©µÄ¾àÀë±Èµ½Ö±Ïßy=-3µÄ¾àÀëС2£¬
¡à¶¯µãP£¨x£¬y£©µ½F£¨0£¬1£©µÄ¾àÀëµÈÓÚËüµ½Ö±Ïßy=-1µÄ¾àÀ룬
¡à¶¯µãPµÄ¹ì¼£ÊÇÒÔF£¨0£¬1£©Îª½¹µãµÄÅ×ÎïÏߣ¬±ê×¼·½³ÌΪx2=4y£»
£¨2£©¢ÙÒÀÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪy=kx+1£¬´úÈëx2=4y£¬µÃx2-4kx-4=0£¬
¡÷=£¨-4k£©2+16£¾0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=4k£¬x1x2=-4£¬
¡ß$\overrightarrow{BF}=¦Ë\overrightarrow{BA}$£¬¡à£¨-x2£¬y2£©=¦Ë£¨x1-x2£¬y1-y2£©£¬$\frac{{x}_{1}}{{x}_{2}}=1-\frac{1}{¦Ë}$£¬
$\frac{16{k}^{2}}{-4}=\frac{£¨{x}_{1}+{x}_{2}£©^{2}}{{x}_{1}{x}_{2}}$=$\frac{{x}_{1}}{{x}_{2}}+2+\frac{{x}_{2}}{{x}_{1}}$=1-$\frac{1}{¦Ë}+2+\frac{¦Ë}{¦Ë-1}$£¬
¼´4k2+2=$\frac{1}{¦Ë}-1+\frac{1}{\frac{1}{¦Ë}-1}$£¬
¡ß¦Ë¡Ê[$\frac{1}{2}$£¬$\frac{2}{3}$]£¬¡à$\frac{1}{¦Ë}-1¡Ê[\frac{1}{2}£¬1]$£¬
¡ßº¯Êýf£¨x£©=x+$\frac{1}{x}$ÔÚ[$\frac{1}{2}£¬1$]µ¥µ÷µ¥µ÷µÝ¼õ£¬
¡à4k2+2¡Ê[2£¬$\frac{5}{2}$]£¬-$\frac{\sqrt{2}}{4}¡Ük¡Ü\frac{\sqrt{2}}{4}$£¬
¡àkµÄȡֵ·¶Î§ÊÇ[-$\frac{\sqrt{2}}{4}£¬\frac{\sqrt{2}}{4}$]£®
¢Úy=$\frac{1}{4}$x2£¬y¡ä=$\frac{1}{2}$x£¬
¡àÖ±ÏßPA£ºy-$\frac{1}{4}$x12=$\frac{1}{2}$x1£¨x-x1£©£¬PB£ºy-$\frac{1}{4}$x22=$\frac{1}{2}$x2£¨x-x2£©£¬
Á½Ê½Ïà¼õÕûÀí¿ÉµÃx=$\frac{1}{2}$£¨x1+x2£©=2k£¬
½«x=$\frac{1}{2}$£¨x1+x2£©=2k£¬´úÈëÖ±ÏßPAµÄ·½³ÌÇóµÃy=-1£¬
¡àP£¨2k£¬-1£©£¬Pµ½Ö±ÏßABµÄ¾àÀëd=$\frac{Ø­2{k}^{2}+2Ø­}{\sqrt{1+{k}^{2}}}$=2$\sqrt{1+{k}^{2}}$£¬
¡ß|AM|=|AF|-1=y1£¬|BN|=|BF|-1=y2£¬
¡à|AM|•|BN|=y1y2=$\frac{{x}_{1}^{2}•{x}_{2}^{2}}{16}$=1£¬
¡à¡÷AMPÓë¡÷BNPÃæ»ýÖ®»ýS¡÷AMP•S¡÷BNP
=$\frac{1}{2}$|AM|•d¡Á$\frac{1}{2}$|BN|•d=$\frac{1}{4}$d2=$\frac{1}{4}$£¨2$\sqrt{1+{k}^{2}}$£©2=1+k2£¬
µ±ÇÒ½öµ±k=0ʱ£¬¡÷AMPÓë¡÷BNPÃæ»ýÖ®»ýµÄ×îСֵΪ1£®

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵ͍ÒåÓë·½³Ì£¬¿¼²éÖ±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éÈý½ÇÐÎÃæ»ýµÄ¼ÆË㣬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÔÚ¡÷ABCÖУ¬|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|£¬AC=4£¬ÈôEµãÔÚBC±ßÉÏ£¬ÇÒBE=3EC£¬Ôò$\overrightarrow{AE}$$•\overrightarrow{AC}$=£¨¡¡¡¡£©
A£®3B£®6C£®12D£®24

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÊýÁÐ{an}¡¢{bn}Âú×ãbn=log2an£¬n¡ÊN+£¬ÆäÖÐ{bn}ÊǵȲîÊýÁУ¬ÇÒa9a2009=4£¬Ôòb1+b2+b3+¡­+b2017=£¨¡¡¡¡£©
A£®2016B£®2017C£®log22017D£®$\frac{2017}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒѳÉÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{3}$£®ÆäÓÒ¶¥µãÓëÉ϶¥µãµÄ¾àÀëΪ$\sqrt{5}$£¬¹ýµãP£¨0£¬2£©µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèMÊÇABÖе㣬ÇÒQµãµÄ×ø±êΪ£¨$\frac{2}{5}$£¬0£©£¬µ±QM¡ÍABʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãP£¨1£¬$\frac{3}{2}$£©£¬ÇÒÒ»¸ö½¹µãΪF1£¨-1£¬0£©£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÈôPA¡¢PB¡¢PCΪÍÖÔ²EµÄÈýÌõÏÒ£¬PA¡¢PBËùÔÚµÄÖ±Ïß·Ö±ðÓëxÖá½»ÓÚµãM£¬N£¬ÇÒ|PM|=|PN|£¬PC¡ÎAB£¬ÇóÖ±ÏßPCµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{2x+4£¬x¡Ü0}\\{{2}^{x}£¬x£¾0}\end{array}\right.$£¬Èôf[f£¨a£©]£¾f[f£¨a£©+1]£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®$£¨-\frac{5}{2}£¬-2]$B£®$[-\frac{5}{2}£¬-2]$C£®[-2£¬0£©D£®[-2£¬0]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÔÏÂÁù¸ö¹ØÏµÊ½£º¢Ù0¡Ê{0}¢Ú{0}?∅¢Û0.3∉Q¢Ü0¡ÊN¢Ý{x|x2-2=0£¬x¡ÊZ}Êǿռ¯£¬ÆäÖдíÎóµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®1B£®3C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êý$f£¨x£©={sin^2}x+\sqrt{3}sinxcosx-\frac{1}{2}$£®
£¨1£©Çóf£¨x£©µ¥µ÷µÝ¼õÇø¼ä£»
£¨2£©ÒÑÖªa£¬b£¬c·Ö±ðΪ¡÷ABCÄڽǣ¬A£¬B£¬CµÄ¶Ô±ß£¬$a=2\sqrt{3}£¬c=4£¬Èôf£¨A£©$ÊÇf£¨x£©ÔÚ£¨0£¬¦Ð£©ÉϵÄ×î´óÖµ£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖª½Ç¦ÁµÄʼ±ßÓëxÖá·Ç¸º°ëÖáÖØÌ¨£¬ÖÕ±ßÔÚÉäÏß4x-3y=0£¨x¡Ü0£©ÉÏ£¬Ôòcos¦Á-sin¦Á=$\frac{1}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸