精英家教网 > 高中数学 > 题目详情
9.如图,矩形ACEF和等边三角形ABC中,AC=2,CE=1,平面ABC⊥平面ACEF.
(1)在EF上找一点M,使BM⊥AC,并说明理由;
(2)在(1)的条件下,求平面ABM与平面CBE所成锐二面角余弦值.

分析 (1)分别取AC、EF的中点O、M,连接OM,推导出AC⊥BO,AC⊥OM,从而AC⊥面BOM,由此能证明BM⊥AC.
(2)由OA,OB,OM两两互相垂直,建立空间直角坐标系O-xyz,由此能求出平面MAB与平面BCE所成锐二面角的余弦值.

解答 解:(1)M为线段EF的中点,理由如下:
分别取AC、EF的中点O、M,连接OM,
在等边三角形ABC中,AC⊥BO,
又OM为矩形ACEF的中位线,AC⊥OM,
而OM∩OB=O,
∴AC⊥面BOM,∴BM⊥AC.
(2)由(1)知OA,OB,OM两两互相垂直,
建立空间直角坐标系O-xyz如图所示,
AC=2,CE=1,三角形ABC为等边三角形,$O({0,0,0}),B({0,\sqrt{3},0}),C({-1,0,0}),E({-1,0,1}),A({1,0,0}),F({1,0,1})$.
∴$\overrightarrow{CB}=({1,\sqrt{3},0}),\overrightarrow{CE}=({0,0,1})$,
设面BCE的法向量$\overrightarrow n=({x,y,z})$,
∴$\left\{{\begin{array}{l}{\overrightarrow n•\overrightarrow{CB}=0}\\{\overrightarrow n•\overrightarrow{CE}=0}\end{array}}\right.$,得$\left\{{\begin{array}{l}{x+\sqrt{3}y=0}\\{z=0}\end{array}}\right.$,
则面BCE的一个法向量$\overrightarrow{n_0}=({\sqrt{3},-1,0})$,
又M是线段EF的中点,
则M的坐标为M(0,0,1),
∴$\overrightarrow{AM}=({-1,0,1})$,且$\overrightarrow{AB}=({-1,\sqrt{3},0})$,
又设面ABM的法向量$\overrightarrow m=({a,b,c})$,
由$\left\{{\begin{array}{l}{\overrightarrow m•\overrightarrow{AB}=0}\\{\overrightarrow m•\overrightarrow{AM}=0}\end{array}}\right.$,得$\left\{{\begin{array}{l}{-a+c=0}\\{-a+\sqrt{3}b=0}\end{array}}\right.$,
取$a=\sqrt{3}$,则$b=1,c=\sqrt{3}$,
面ABM的一个法向量$\overrightarrow{m}$=($\sqrt{3},1,\sqrt{3}$),
∴cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{2\sqrt{7}}$=$\frac{\sqrt{7}}{7}$,
平面MAB与平面BCE所成锐二面角的余弦值为$\frac{{\sqrt{7}}}{7}$.

点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知$\sqrt{2\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,$\sqrt{3\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,$\sqrt{4\frac{4}{15}}=4\sqrt{\frac{4}{15}}$,…,若$\sqrt{6\frac{a}{t}}=6\sqrt{\frac{a}{t}}$(a、t∈R*),则a=6,t=35.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知复数z满足z=(2-i)(1+2i),其中i为虚数单位,则|z|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}、{bn}满足bn=log2an,n∈N+,其中{bn}是等差数列,且a9a2009=4,则b1+b2+b3+…+b2017=(  )
A.2016B.2017C.log22017D.$\frac{2017}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={(x1,x2,x3,x4)|xi∈{-1,0,1},i=1,2,3,4},那么集合A中满足条件“$x_1^2+x_2^2+x_3^2+x_4^2≤4$”的元素个数为(  )
A.60B.65C.80D.81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已成椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$.其右顶点与上顶点的距离为$\sqrt{5}$,过点P(0,2)的直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)设M是AB中点,且Q点的坐标为($\frac{2}{5}$,0),当QM⊥AB时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(1,$\frac{3}{2}$),且一个焦点为F1(-1,0).
(1)求椭圆E的方程;
(2)若PA、PB、PC为椭圆E的三条弦,PA、PB所在的直线分别与x轴交于点M,N,且|PM|=|PN|,PC∥AB,求直线PC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.以下六个关系式:①0∈{0}②{0}?∅③0.3∉Q④0∈N⑤{x|x2-2=0,x∈Z}是空集,其中错误的个数是(  )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知三棱锥的所有棱长均为$\sqrt{2}$,则该三棱锥的外接球的直径为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案