精英家教网 > 高中数学 > 题目详情
19.已知三棱锥的所有棱长均为$\sqrt{2}$,则该三棱锥的外接球的直径为$\sqrt{3}$.

分析 由正三棱锥S-ABC的所有棱长均为$\sqrt{2}$,所以此三棱锥一定可以放在棱长为1的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球的直径.

解答 解:∵正三棱锥的所有棱长均为$\sqrt{2}$,
∴此三棱锥一定可以放在正方体中,
∴我们可以在正方体中寻找此三棱锥.
∴正方体的棱长为1,
∴此四面体的外接球即为此正方体的外接球,
∵外接球的直径为正方体的对角线长$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 本题考查几何体的接体问题,考查了空间想象能力,其解答的关键是根据几何体的结构特征,放在正方体中求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,矩形ACEF和等边三角形ABC中,AC=2,CE=1,平面ABC⊥平面ACEF.
(1)在EF上找一点M,使BM⊥AC,并说明理由;
(2)在(1)的条件下,求平面ABM与平面CBE所成锐二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若(1+2x)n(n∈N*)二项式展开式中的各项系数之和为an,其二项式系数之和为bn,则$\lim_{n→∞}\frac{{{b_{n+1}}-{a_n}}}{{{a_{n+1}}+{b_n}}}$=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥中P-ABCD中,底面ABCD是菱形,且∠DAB=60°,PA=PD,M为CD的中点,平面PAD⊥平面ABCD.
(1)求证:BD⊥PM;
(2)若∠APD=90°,PA=$\sqrt{2}$,求点A到平面PBM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图程序语句,输入a=2cos$\frac{2017π}{3}$,b=2tan$\frac{2017π}{4}$,则输出y的值是(  )
A.3B.4C.6D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx+$\frac{a}{x}$(a∈R).
(1)当a=0时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)求证:当a≥1,f(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设复数z满足(1+i)z=|1-i|(i为虚数单位),则$\overline z$=(  )
A.1+iB.1-iC.$\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{2}}}{2}i$D.$\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a为实数,设函数f(x)=$\left\{\begin{array}{l}{x-{2}^{a},x<2}\\{lo{g}_{2}(x-2),x≥2}\end{array}\right.$,则f(2a+2)的值为(  )
A.2aB.aC.2D.a或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,四边形AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥BC;
(Ⅱ)求平面CA1B1与平面A1B1C1的夹角的大小.

查看答案和解析>>

同步练习册答案