精英家教网 > 高中数学 > 题目详情
11.设复数z满足(1+i)z=|1-i|(i为虚数单位),则$\overline z$=(  )
A.1+iB.1-iC.$\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{2}}}{2}i$D.$\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$

分析 由(1+i)z=|1-i|,得$z=\frac{|1-i|}{1+i}$,然后利用复数代数形式的乘除运算化简复数z,则$\overline{z}$可求.

解答 解:由(1+i)z=|1-i|,
得$z=\frac{|1-i|}{1+i}$=$\frac{\sqrt{2}(1-i)}{(1+i)(1-i)}=\frac{\sqrt{2}-\sqrt{2}i}{2}=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$,
则$\overline z$=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(1,$\frac{3}{2}$),且一个焦点为F1(-1,0).
(1)求椭圆E的方程;
(2)若PA、PB、PC为椭圆E的三条弦,PA、PB所在的直线分别与x轴交于点M,N,且|PM|=|PN|,PC∥AB,求直线PC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:
①当x>0时,f(x)=e-x(x-1);
②函数f(x)有2个零点;
③f(x)<0的解集为(-∞,-1)∪(0,1),
④?x1,x2∈R,都有|f(x1)-f(x2)|<2.
其中正确命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知三棱锥的所有棱长均为$\sqrt{2}$,则该三棱锥的外接球的直径为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=$\sqrt{3}$,A=$\frac{π}{6}$,则角B等于(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知角α的始边与x轴非负半轴重台,终边在射线4x-3y=0(x≤0)上,则cosα-sinα=$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)存在导数且满足$\lim_{△x→0}\frac{f(2)-f(2-3△x)}{3△x}=2$,则曲线y=f(x)在点(2,f(2))处的切线斜率为(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在锐角△ABC中,a、b、c分别是角A、B、C的对边,若A满足2cos2A+cos(2A+$\frac{π}{3}$)=-$\frac{1}{2}$.
(Ⅰ)求A的值;
(Ⅱ)若c=3,△ABC的面积为3$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设曲线C:f(x)=x3-ax+b(a,b∈R).
(1)若函数g(x)=lnx-$\frac{a}{6}$[f′(x)+a]-2x存在单调递减区间,求a的取值范围(f′(x)为f(x)的导函数)
(2)若过曲线C外的点A(1,0)作曲线C的切线恰有三条,求a,b满足的关系式.

查看答案和解析>>

同步练习册答案