分析 (1)连结AC1交A1C于点G,连结DG.推导出DG∥BC1,由此能证明BC1∥平面A1DC.
(2)过点D作DE⊥AC于E,过点D作DF⊥A1C交A1C于F,连结EF,推导出∠DFE是二面角D-A1C-A的平面角.由此能求出二面角D-A1C-A的平面角的正弦值.
解答 证明:(1)连结AC1交A1C于点G,连结DG.![]()
在正三棱柱ABC-A1B1C1中,四边形ACC1A1是平行四边形,
∴AG=GC1.
∵AD=DB,
∴DG∥BC1.…(2分)
∵DG?平面A1DC,BC1?平面A1DC,
∴BC1∥平面A1DC.…(4分)
解:(2)过点D作DE⊥AC于E,
过点D作DF⊥A1C交A1C于F,连结EF,
∵平面ABC⊥平面ACC1A1,DE?平面ABC,
平面ABC∩平面ACC1A1=AC,
∴DE⊥平面ACC1A1,
∴EF是DF在平面ACC1A1内的射影,
∴EF⊥A1C
∴∠DFE是二面角D-A1C-A的平面角.
在直角三角形ADC中,$DE=\frac{AD•DC}{AC}=\frac{{\sqrt{3}}}{4}$.
同理可求:$DF=\frac{{{A_1}D•DC}}{{{A_1}C}}=\frac{{\sqrt{39}}}{8}$.
∴$sinDFE=\frac{DE}{DF}=\frac{{2\sqrt{13}}}{13}$.…(12分)
点评 本题考查线面平行的证明,考查二面角的平面角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 5 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 如果平面α⊥γ,β⊥γ,α∩β=l,那么l⊥γ | |
| B. | 如果平面α⊥β,那么平面α 中一定存在直线平行于平面β | |
| C. | 如果平面 α不垂直于平面β,那么平面α 内一定不存在直线垂直于平面β | |
| D. | 如果平面α⊥β,那么平面 α内所有直线都垂直于平面β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{2\sqrt{3}}}{5}$ | B. | $\frac{{2\sqrt{3}}}{5}$ | C. | $\frac{{4\sqrt{3}-3}}{10}$ | D. | $\frac{{4\sqrt{3}+3}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com