14£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{2\sqrt{3}}{\sqrt{1+2si{n}^{2}¦È}}$£¬ÇÒÇúÏßCµÄ×ó½¹µãFÔÚÖ±ÏßlÉÏ£®
£¨1£©ÇóʵÊýmºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó$\frac{1}{|AF|}$+$\frac{1}{|BF|}$£®

·ÖÎö £¨1£©½«ÇúÏßCµÄ¼«×ø±ê·½³ÌÁ½±ßƽ·½£¬È¥·Öĸ£¬¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ¶ÔÓ¦¹ØÏµÇó³öCµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ³ö×󽹵㣬´úÈëÖ±Ïß·½³ÌÇó³öm£»
£¨2£©½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßCµÄÆÕͨ·½³Ì£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒåÇó³ö|AF|£¬|BF|£®

½â´ð ½â£º£¨1£©Ö±ÏßlµÄÆÕ·Ç³£Îªx-m=y£¬¼´x-y-m=0£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{2\sqrt{3}}{\sqrt{1+2si{n}^{2}¦È}}$£¬¼´¦Ñ2+2¦Ñ2sin2¦È=12£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+3y2=12£¬¼´$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1$£®
¡àÇúÏßCµÄ×ó½¹µãFΪ£¨-2$\sqrt{2}$£¬0£©£®
¡ßFÔÚÖ±ÏßlÉÏ£¬¡à-2$\sqrt{2}$-m=0£¬¡àm=-2$\sqrt{2}$£®
£¨2£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2\sqrt{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
´úÈëÇúÏßCµÄ·½³Ìx2+3y2=12µÃ£ºt2-2t-2=0£®
¡àt1=1+$\sqrt{3}$£¬t2=1-$\sqrt{3}$£®
¡à$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{1}{{|t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{1}{1+\sqrt{3}}$+$\frac{1}{\sqrt{3}-1}$=$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ö±Ïß²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒåÓëÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑ֪˫ÇúÏßCµÄ×óÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÇÒF2ǡΪÅ×ÎïÏßy2=8xµÄ½¹µã£®ÉèAΪ˫ÇúÏßCÓë¸ÃÅ×ÎïÏßµÄÒ»¸ö½»µã£¬Èô¡÷AF1F2ÊÇÒÔAF1µÄµ×±ßµÄµÈÑüÈý½ÇÐΣ¬ÔòË«ÇúÏßCµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®1+$\sqrt{3}$B£®1+$\sqrt{2}$C£®$\sqrt{3}$D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔڵȲîÊýÁÐ{an}ÖУ¬a1=4£¬¹«²îd¡Ù0£¬ÇÒa1£¬a7£¬a10³ÉµÈ±ÈÊýÁУ¬Èô¸ÃÊýÁÐǰnÏîºÍSn=11£¬ÊÔÈ·¶¨ÏîÊýn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªa£¬bΪ¿Õ¼äÁ½Ìõ²»ÖغϵÄÖ±Ïߣ¬¦Á£¬¦ÂΪ¿Õ¼äÁ½¸ö²»ÖØºÏµÄÆ½Ã棬ÔòÒÔϽáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èô¦Á¡Í¦Â£¬a?¦Á£¬Ôòa¡Í¦ÂB£®Èô¦Á¡Í¦Â£¬a¡Í¦Â£¬Ôòa¡Î¦ÁC£®Èôa?¦Á£¬a¡Î¦Â£¬Ôò¦Á¡Î¦ÂD£®Èôa?¦Á£¬a¡Í¦Â£¬Ôò¦Á¡Í¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬an+1=£¨1+$\frac{1}{{n}^{2}+n}$£©an+$\frac{1}{{2}^{n}}$£¨n¡ÊN*£©£®
£¨1£©Ö¤Ã÷£ºµ±n¡Ý2ʱ£¬an¡Ý2£»
£¨2£©Éèbn=$\frac{{a}_{n+1}-{a}_{n}}{{a}_{n}}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍÊÇSn£¬Ö¤Ã÷£ºSn£¼$\frac{7}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èô¹ØÓÚxµÄ²»µÈʽ×é$\left\{\begin{array}{l}{{x}^{3}+3{x}^{2}-x-3£¾0}\\{{x}^{2}-2ax-1¡Ü0}\end{array}\right.$£¨a£¾0£©µÄÕûÊý½âÓÐÇÒ½öÓÐÒ»¸ö£¬ÔòaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[$\frac{3}{4}$£¬$\frac{4}{3}$]B£®[$\frac{3}{4}$£¬$\frac{4}{3}$£©C£®£¨$\frac{3}{4}$£¬$\frac{4}{3}$£©D£®£¨$\frac{3}{4}$£¬$\frac{4}{3}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÇóÏÂÁи÷ʽµÄÖµ£º
£¨1£©sin[arcsin$\frac{1}{2}$+arccos£¨-$\frac{\sqrt{3}}{2}$£©]£»
£¨2£©sin[arccos£¨-$\frac{12}{13}$£©]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÉäÏßOA£ºx-y=0£¨x¡Ý0£©£¬OB£ºx+2y=0£¨x¡Ý0£©£¬¹ýµãP£¨1£¬0£©×÷Ö±Ïß·Ö±ð½»ÉäÏßOA£¬OBÓÚµãA£¬B£¬ABµÄÖеãΪP£®
£¨1£©ÇóÖ±ÏßABµÄ·½³Ì£»
£¨2£©¹ýµãC£¨6£¬-1£©×÷Ö±Ïßl£¬Ê¹µÃA£¬BÁ½µãµ½Ö±ÏßlµÄ¾àÀëÏàµÈ£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÊýÁÐ{an}ÖУ¬2Sn=n2+n£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Èôbn=2an•an£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸