| A. | 1+$\sqrt{3}$ | B. | 1+$\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
分析 求出抛物线的焦点坐标,即可得到双曲线c的值,利用抛物线与双曲线的交点以及△AF1F2是以AF1为底边的等腰三角形,结合双曲线a、b、c关系求出a的值,然后求出离心率.
解答 解:抛物线的焦点坐标(2,0),所以双曲线中,c=2,
因为双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,
由抛物线的定义可知,抛物线的准线方程过双曲线的左焦点,所以$\frac{{b}^{2}}{a}$=2c,
c2=a2+b2=4,解得a=2+$\sqrt{2}$,双曲线的离心率e=$\frac{c}{a}$=1+$\sqrt{2}$.
故选:B.
点评 本题考查抛物线的简单性质以及双曲线的简单性质的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | ¬p∧¬q | C. | ¬p∧q | D. | p∧¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 97 | B. | 98 | C. | 99 | D. | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com