精英家教网 > 高中数学 > 题目详情
4.已知双曲线C的左右焦点分别为F1、F2,且F2恰为抛物线y2=8x的焦点.设A为双曲线C与该抛物线的一个交点,若△AF1F2是以AF1的底边的等腰三角形,则双曲线C的离心率为(  )
A.1+$\sqrt{3}$B.1+$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{2}$

分析 求出抛物线的焦点坐标,即可得到双曲线c的值,利用抛物线与双曲线的交点以及△AF1F2是以AF1为底边的等腰三角形,结合双曲线a、b、c关系求出a的值,然后求出离心率.

解答 解:抛物线的焦点坐标(2,0),所以双曲线中,c=2,
因为双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,
由抛物线的定义可知,抛物线的准线方程过双曲线的左焦点,所以$\frac{{b}^{2}}{a}$=2c,
c2=a2+b2=4,解得a=2+$\sqrt{2}$,双曲线的离心率e=$\frac{c}{a}$=1+$\sqrt{2}$.
故选:B.

点评 本题考查抛物线的简单性质以及双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知命题p:y=sin(x-$\frac{π}{2}}$)在(0,π)上是减函数;命题q:“a=$\sqrt{3}$”是“直线x=$\frac{π}{6}$为曲线f(x)=sinx+acosx的一条对称轴”的充要条件.则下列命题为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(n)(n∈N+)满足f(n)=$\left\{{\begin{array}{l}{n-3,n≥100}\\{f[f(n+5)],n<100}\end{array}}$,则f(1)=(  )
A.97B.98C.99D.100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\frac{{ln({2x-{x^2}})}}{x-1}$的定义域为(0,1)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a,b是实数,函数f(x)=x|x-a|+b.
(Ⅰ)当a=-2时,求函数f(x)的单调递增区间;
(Ⅱ)当a>0时,求函数f(x)在区间[1,4]上的最大值;
(Ⅲ)若存在a∈[-3,0],使得函数f(x)在[-4,5]上恒有三个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{m-{x}^{2},x≥0}\end{array}\right.$,给出下列两个命题:
命题p:若m=$\frac{1}{4}$,则f(f(-1)=0.
命题q:?m∈(-∞,0),方程f(x)=0有解.
那么,下列命题为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知$\frac{sinB}{sinA+sinC}$=1-$\frac{sinC}{sinA+sinB}$,且b=5,acosC=-1.
(1)求角A;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知二次函数f(x)=ax2+bx+c的图象过A(x1,y1)、B(x2,y2)两点,且满足a2+(y1+y2)a+y1y2=0.
(1)证明y1=-a或y2=-a;
(2)证明函数f(x)的图象必与x轴有两个交点;
(3)若关于x的不等式f(x)>0的解为x<n或x>m(n<m<0),解关于x的不等式cx2-bx+a>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l的参数方程为$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=$\frac{2\sqrt{3}}{\sqrt{1+2si{n}^{2}θ}}$,且曲线C的左焦点F在直线l上.
(1)求实数m和曲线C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,求$\frac{1}{|AF|}$+$\frac{1}{|BF|}$.

查看答案和解析>>

同步练习册答案