精英家教网 > 高中数学 > 题目详情
4.已知等差数列{an}的前n项和为Sn(n∈N*),a2=4,S5=35.
(1)求数列{an}的前n项和为Sn
(2)若数列{bn}满足bn=2an,求证:数列{bn}为等比数列,并求数列{bn}的前n项的和Tn

分析 (1)通过设数列{an}的首项为a1、公差为d,利用a2=4、S5=35计算即得结论;
(2)通过(1)可知${b_n}={2^{3n-2}}$,即得数列{bn}构成首项为2、公比为8的等比数列,进而利用等比数列的求和公式计算即得结论.

解答 (1)解:设数列{an}的首项为a1,公差为d.
则$\left\{\begin{array}{l}{a_1}+d=4\\ 5{a_1}+\frac{5(5-1)}{2}d=35\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a_1}=1\\ d=3\end{array}\right.$,
∴an=3n-2(n∈N*),
∴前n项和${S_n}=\frac{n(1+3n-2)}{2}=\frac{n(3n-1)}{2}$(n∈N*);
(2)证明:∵an=3n-2(n∈N*),
∴${b_n}={2^{3n-2}}$(n∈N*),
∴b1=2≠0,$\frac{{{b_{n+1}}}}{b_n}=8$(n∈N*),
∴数列{bn}构成首项为2、公比为8的等比数列,
∴数列{bn}的前n项的和${T_n}=\frac{2}{7}({8^n}-1)$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图EF为两条直线l1、l2的公垂线段,且EF=9,点B、D分别在两平行直线上运动,且A、B、C、D满足$\overrightarrow{FA}$=2$\overrightarrow{AE}$,$\overrightarrow{AB}$+$\overrightarrow{CD}$=0,$\overrightarrow{AC}$•$\overrightarrow{BD}$=0.
(1)如图1,若点B,D在线段EF同侧运动,且∠BAD=60°,试求四边形ABCD的面积;
(2)如图2,若点B,D在线段EF异侧侧运动,试求四边形ABCD的面积的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ln(x+a)-x2-x-b(a,b∈R)在x=0处取得极值.
(1)若函数f(x)在区间[-1,1]上有两个零点,求实数b的取值范围.
(2)证明:$\frac{2}{1^2}$+$\frac{3}{2^2}$+$\frac{4}{3^2}$+…+$\frac{n+1}{n^2}$>ln(n+1)(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.等差数列{an}的各项均为正数,a1=1,前n项和为Sn;{bn}为等比数列,b1=1,且b2S2=6,b3S3=24,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(2)令${C_n}=\frac{n}{b_n}+\frac{1}{{{a_n}•{a_{n+2}}}}$,Tn=C1+C2+C3+…+Cn;是否存在最小的实数t,使得$t>{T_n}+\frac{2n+3}{2(n+1)(n+2)}$恒成立,若存在,请求出最小的实数t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设定义域为R的函数f(x)满足下列条件:对任意x∈R,f(x)+f(-x)=0,且对任意x1,x2∈[1,a](a>1),当x2>x1时,有f(x2)>f(x1)>0.给出下列四个结论:
①f(a)>f(0)②f($\frac{1+a}{2}$)>f($\sqrt{a}$)
③f($\frac{1-3a}{1+a}$)>f(3)④f($\frac{1-3a}{1+a}$)>f(a)
其中所有的正确结论的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在等差数列{an}中,已知a3=10,a9=28,则a12的值为37.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}的公差d<0,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
(1)求an与bn;             
(2)求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则f($\frac{21}{4}$)=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$y=2x+\sqrt{1-2x}$的值域为(-∞,$\frac{5}{4}$].

查看答案和解析>>

同步练习册答案