精英家教网 > 高中数学 > 题目详情
5.设命题p:不等式($\frac{1}{2014}$)x+4>m≥4x-x2对一切实数x恒成立,命题q:f(x)=-(9-2m)x是R上的增函数,若p且q为假命题,则实数m的取值范围是(  )
A.{m|m≠4}B.{m|m∈R}C.{m|m≤0}D.{m|m≤0或m≥4}

分析 分别求出命题p,q为真命题的等价条件,结合复合命题p且q为假命题的关系即可得到结论.

解答 解:∵($\frac{1}{2014}$)x+4>4,4x-x2=-(x-2)2+4≤4,
∴若不等式($\frac{1}{2014}$)x+4>m≥4x-x2对一切实数x恒成立,
则m=4,即p:m=4,
若f(x)=-(9-2m)x是R上的增函数,则0<9-2m<1,解得4<m<$\frac{9}{2}$,即q:4<m<$\frac{9}{2}$,
若p且q为假命题,则p,q至少有一个为假,
则当p,q同时为真时,m∈∅,
故若p且q为假命题,则m∈R,
故选:B

点评 本题主要考查复合命题的真假判断,利用条件先求出命题p,q为真命题的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=mx+$\frac{n}{x}$(x>0,m、n∈R).
(1)若m=n=1,求f(x)的最小值;
(2)若对任意满足不等式组$\left\{\begin{array}{l}{m>0}\\{n>0}\\{\frac{1}{m}+\frac{4}{n}≤1}\end{array}\right.$的m、n均有f(x)≥9成立,求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知一元二次不等式ax2-2ax+2a-3<0(a≠0),求解下列问题:
(1)当a=2时,解此不等式;
(2)若原不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在数列{an}中,已知a1=1,an+1=$\frac{2{a}_{n}}{3{a}_{n}+2}$(n∈N+),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=sin2x+cos2x的图象,可由函数y=sin2x-cos2x的图象(  )
A.向左平移$\frac{π}{8}$个单位得到B.向右平移$\frac{π}{8}$个单位得到
C.向左平移$\frac{π}{4}$个单位得到D.向左右平移$\frac{π}{4}$个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知在三棱锥P-ABC中,PA=PB=PC=$\sqrt{3}$,侧棱PA与底面ABC所成的角为60°,则该三棱锥外接球的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=$\frac{|cosx|}{sinx+3}$-m有零点,则实数m的取值范围是(  )
A.[0,1)B.[0,$\frac{\sqrt{2}}{2}$]C.[0,$\frac{\sqrt{2}}{4}$]D.(1,$\frac{\sqrt{2}}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知an=$\frac{{2}^{n}}{({2}^{n}-1)^{2}}$,Tn为{an}前n项和.求证:Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)为定义在D上的单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数.若函数g(x)=x2+m是(-∞,0)上的正函数,则实数m的取值范围为(  )
A.(-$\frac{5}{4}$,-1)B.(-1,-$\frac{3}{4}$)C.(-$\frac{5}{4}$,-$\frac{3}{4}$)D.(-$\frac{3}{4}$,0)

查看答案和解析>>

同步练习册答案