精英家教网 > 高中数学 > 题目详情
10.已知p:-x2+4x+12≥0,q:x2-2x+1-m2≤0(m>0).
(Ⅰ)若p是q充分不必要条件,求实数m的取值范围;
(Ⅱ)若“¬p”是“¬q”的充分条件,求实数m的取值范围.

分析 (Ⅰ)求出p,q的等价条件,结合充分不必要条件的定义建立集合关系进行求解即可.
(Ⅱ)根据逆否命题的等价性进行转化,结合充分条件和必要条件的定义进行转化解不等式组即可.

解答 解:由题知:p为真时,由-x2+4x+12≥0得-2≤x≤6,
q为真时,由x2-2x+1-m2≤0(m>0).得1-m≤x≤1+m,
令P=[-2,6],Q=[1-m,1+m],m>0…(4分)
(Ⅰ)∵p是q的充分不必要条件,∴P?Q,
∴$\left\{\begin{array}{l}{1-m≤-2}\\{1+m≥6}\end{array}\right.$,等号不能同时取,得$\left\{\begin{array}{l}{m≥3}\\{m≥5}\end{array}\right.$,解得m≥5,
故p是q充分不必要条件时,m取值范围是[5,+∞)…(8分)
(Ⅱ)∵“¬p”是“¬q”的充分条件,
∴“p”是“q”的必要条件,
∴Q⊆P,∴$\left\{\begin{array}{l}{1-m≥-2}\\{1+m≤6}\\{m>0}\end{array}\right.$,解得0<m≤3,
∴m的取值范围是(0,3]…(12分)

点评 本题主要考查充分条件和必要条件的应用,根据条件求出p,q的等价条件,结合充分条件和必要条件的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.从双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$的左焦点F引圆x2+y2=4的切线FP交双曲线右支于点P,T为切点,N为线段FP的中点,O为坐标原点,则|NO|-|NT|=2$\sqrt{3}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线a与平面α不垂直,则下列说法正确的是(  )
A.平面α内有无数条直线与直线a垂直
B.平面α内有任意一条直线与直线a不垂直
C.平面α内有且只有一条直线与直线a垂直
D.平面α内可以找到两条相交直线与直线a垂直

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\left\{\begin{array}{l}{cos(π{x}^{2}),-1<x<0}\\{{e}^{x}-1,x≥0}\end{array}\right.$,若f(a)=0,则a的所有可能值组成的集合为(  )
A.{0}B.{0,$\frac{\sqrt{2}}{2}$}C.{0,-$\frac{\sqrt{2}}{2}$}D.{-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设向量$\overrightarrow{a}$=(-1,-1,1),$\overrightarrow{b}$=(-1,0,1),则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,∠ABC=$\frac{π}{3}$,边BC在平面α内,顶点A在平面α外,直线AB与平面α所成角为θ.若平面ABC与平面α所成的二面角为$\frac{π}{3}$,则sinθ=$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“方程$\frac{{x}^{2}}{m}$$+\frac{{y}^{2}}{6-2m}$=1表示的曲线是焦点在y轴上的椭圆”的必要不充分条件是(  )
A.1<m<2B.0<m<2C.m<2D.m≥2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知{an}为等差数列,a1=1,a4=7,则a6=11.

查看答案和解析>>

同步练习册答案