精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\frac{ln(kx)}{x}$在(0,e${\;}^{\frac{3}{2}}$)内的最大值为$\frac{1}{e}$.
(Ⅰ)求正实数k的值;
(Ⅱ)若对任意的x1,x2∈(0,e${\;}^{\frac{3}{2}}$],存在x0∈(x1,x2)使得f′(x0)=$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$,证明:x0<$\sqrt{{x}_{1}{x}_{2}}$.

分析 (Ⅰ)先求导,根据导数和函数的最值的关系即可求出k的值,
(Ⅱ)由题意转化为(1-$\frac{{x}_{1}}{{x}_{2}}$)+$\frac{1}{2}$($\frac{{x}_{1}}{{x}_{2}}$+1)ln$\frac{{x}_{1}}{{x}_{2}}$<0,构造函数g(t)=(1-t)+$\frac{1}{2}$(t+1)lnt,利用函数的导数和函数的最值的关系即可证明.

解答 解:(Ⅰ)f′(x)=$\frac{1-lnkx}{{x}^{2}}$,当0<k≤$\frac{1}{\sqrt{e}}$时,f(x)max=f(${e}^{\frac{3}{2}}$)=$\frac{1}{e}$⇒k=${e}^{\sqrt{e}-\frac{3}{2}}$>$\frac{1}{\sqrt{e}}$,舍去;
当k>$\frac{1}{\sqrt{e}}$时,f(x)max=f($\frac{e}{k}$)=$\frac{1}{e}$⇒k=1,
∴k=1.
(Ⅱ)∵f(x)=$\frac{lnx}{x}$,
∴f′(x)=$\frac{1-lnx}{{x}^{2}}$,令m(x)=f′(x),
∴m′(x)=$\frac{-3+2lnx}{{x}^{3}}$<0,
∴f′(x)在(0,${e}^{\frac{3}{2}}$)上递减,要证x0<$\sqrt{{x}_{1}{x}_{2}}$,只需证明f′(x0)>f′($\sqrt{{x}_{1}{x}_{2}}$),
而f′($\sqrt{{x}_{1}{x}_{2}}$)-f′(x0)=$\frac{1-ln\sqrt{{x}_{1}{x}_{2}}}{{x}_{1}{x}_{2}}$-$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$=$\frac{\frac{ln{x}_{2}}{{x}_{2}}-\frac{ln{x}_{1}}{{x}_{1}}}{{x}_{2}-{x}_{1}}$=$\frac{1}{{x}_{1}{x}_{2}}$[1-ln$\sqrt{{x}_{1}{x}_{2}}$-$\frac{{x}_{1}ln{x}_{2}-{x}_{2}ln{x}_{1}}{{x}_{2}-{x}_{1}}$],
∴x1,x2∈(0,e${\;}^{\frac{3}{2}}$],x1-x2<0,
只需证明(x2-x1)[1-ln$\sqrt{{x}_{1}{x}_{2}}$]-(x1lnx2-x2lnx1)<0,
也就是证明(x2-x1)+$\frac{1}{2}$(x2+x1)ln$\frac{{x}_{1}}{{x}_{2}}$<0,
即证(1-$\frac{{x}_{1}}{{x}_{2}}$)+$\frac{1}{2}$($\frac{{x}_{1}}{{x}_{2}}$+1)ln$\frac{{x}_{1}}{{x}_{2}}$<0,
令$\frac{{x}_{1}}{{x}_{2}}$=t,t∈(0,1),即是要证明t∈(0,1)时,(1-t)+$\frac{1}{2}$(t+1)lnt<0恒成立,
令g(t)=(1-t)+$\frac{1}{2}$(t+1)lnt,g(1)=0,
∴g′(t)=$\frac{tlnt-t-1}{t}$,g′(1)=0,.
设k(t)=t-tlnt-1,
∴k′(t)=-lnt<0(t>1),
∴k(t)在(1,+∞)是减函数,
∴k(t)<k(1)=0.
∴g′(t)<0,
∴g(t)在(1,+∞)是减函数,
∴g(t)<g(1)=0,
∴x0<$\sqrt{{x}_{1}{x}_{2}}$.

点评 本题考查了导数在最值中的应用,考查了利用导数研究函数的单调性,考查了换元法和数学转化思想,解答此题的关键是两次构造辅助函数,是较难的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.角α的终边上有一点M(-2,4),则tanα=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.地球赤道的半径为6370km,则赤道上1弧度角所对的圆弧长为6370km.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x3-bx2+cx+d的图象过点P(0,2),且在点M(1,f(1))处的切线方程为x-y-2=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.边长为x的正方形的周长C(x)=4x,面积S(x)=x2,则S′(x)=2x,因此可以得到有关正方形的如下结论:正方形面积函数的导数等于正方形周长函数的一半.那么对于棱长为x的正方体,请你写出关于正方体类似于正方形的结论:正方体体积函数的导数等于正方体表面积函数的一半.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x-4|≥m对一切实数x均成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{3}$x3+bx2+|x-a|(a>0,b∈R),如果f(x)的图象在点x=2a处的切线斜率为4a2+1.
(1)求b的值;
(2)若f(x)在区间(-2,2)上有最小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E,F,G分别为棱AA1,BB1,A1B1的中点,则点G到平面EFD1的距离为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列结论错误的是(  )
A.命题“若p,则q”与命题“若非q,则非p”互为逆否命题
B.命题“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1>0”
C.“若f′(x)=0,则x为y=f(x)的极值点”为真命题
D.“am2<bm2”是“a<b”的充分不必要条件

查看答案和解析>>

同步练习册答案