已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(1)求动点P的轨迹C的方程.
(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求·的最小值.
(1) y2=4x(x≥0)和y=0(x<0) (2) 16
【解析】(1)设动点P的坐标为(x,y),由题意得-|x|=1.化简得y2=2x+2|x|,
当x≥0时,y2=4x;当x<0时,y=0.
所以动点P的轨迹C的方程为
y2=4x(x≥0)和y=0(x<0).
(2)由题意知,直线l1的斜率存在且不为0,设为k,则l1的方程为y=k(x-1).
由得k2x2-(2k2+4)x+k2=0.
设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,于是x1+x2=2+,x1x2=1.
因为l1⊥l2,所以l2的斜率为-.
设D(x3,y3),E(x4, y4),
则同理可得x3+x4=2+4k2,x3x4=1.
·=(+)·(+)
=·+·+·+·
=·+·=||·||+||·||
=(x1+1)(x2+1)+(x3+1)(x4+1)
=x1x2+(x1+x2)+1+x3x4+(x3+x4)+1
=1+(2+)+1+1+(2+4k2)+1
=8+4(k2+)≥8+4×2=16.
故当且仅当k2=,即k=±1时,·取最小值16.
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业六十一第九章第二节练习卷(解析版) 题型:选择题
某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,则n等于( )
(A)5 (B)6 (C)7 (D)8
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十第八章第一节练习卷(解析版) 题型:选择题
已知直线l1:y=2x+1,l2:y=2x+5,则直线l1与l2的位置关系是( )
(A)重合 (B)垂直
(C)相交但不垂直 (D)平行
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十六第八章第七节练习卷(解析版) 题型:填空题
如图,抛物线C1:y2=4x和圆C2:(x-1)2+y2=1,直线l经过C1的焦点F,依次交C1,C2于A,B,C,D四点,则·的值是 .
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十六第八章第七节练习卷(解析版) 题型:选择题
已知抛物线y2=2px(p>0)上的一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十八第八章第九节练习卷(解析版) 题型:选择题
直线y=kx+1,当k变化时,此直线被椭圆+y2=1截得的最大弦长是( )
(A)4 (B)
(C)2 (D)不能确定
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十五第八章第六节练习卷(解析版) 题型:解答题
椭圆C1:+=1(a>b>0)的左、右顶点分别为A,B,点P是双曲线C2:-=1在第一象限内的图象上一点,直线AP,BP与椭圆C1分别交于C,D点,若S△ACD=S△PCD.
(1)求P点的坐标.
(2)能否使直线CD过椭圆C1的右焦点,若能,求出此时双曲线C2的离心率;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十二第八章第三节练习卷(解析版) 题型:填空题
设二次函数y=x2-x+1与x轴正半轴的交点分别为A,B,与y轴正半轴的交点是C,则过A,B,C三点的圆的标准方程是 .
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十七第八章第八节练习卷(解析版) 题型:解答题
已知线段AB的两个端点A,B分别在x轴、y轴上滑动,|AB|=3,点M满足2=.
(1)求动点M的轨迹E的方程.
(2)若曲线E的所有弦都不能被直线l:y=k(x-1)垂直平分,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com