精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax2+lnx.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设函数g(x)=(2a+1)x,若当x∈(1,+∞)时,f(x)<g(x)恒成立,求a的取值范围.
考点:利用导数求闭区间上函数的最值
专题:综合题,导数的综合应用
分析:(Ⅰ)求出定义域、f′(x),分a≥0,a<0两种情况进行讨论,通过解不等式f′(x)>0,f′(x)<0可得单调区间;
(Ⅱ)令h(x)=f(x)-g(x),则h(x)=ax2-(2a+1)x+lnx,则问题转化为当x∈(1,+∞)时,h(x)<0恒成立,进而转化求函数h(x)的最大值问题.求导数h′(x),根据极值点与区间(1,+∞)的关系进行讨论可求得函数的最大值;
解答: 解:(Ⅰ)∵f(x)=ax2+lnx,其中x>0,
f′(x)=
2ax2+1
x

当a≥0时,f′(x)>0,
∴f(x)在(0,+∞)上是增函数;
当a<0时,令f′(x)=0,得x=±
-
1
2a

∴f(x)在(0,
1
2a
)
上是增函数,在(
1
2a
,+∞)
上是减函数.
(Ⅱ)令h(x)=f(x)-g(x),
则h(x)=ax2-(2a+1)x+lnx,
根据题意,当x∈(1,+∞)时,h(x)<0恒成立.
h′(x)=2ax-(2a+1)+
1
x
=
(x-1)(2ax-1)
x

(1)当0<a<
1
2
时,x∈(
1
2a
,+∞)
时,h′(x)>0恒成立.
∴h(x)在(
1
2a
,+∞)
上是增函数,且h(x)∈(h(
1
2a
),+∞)
,不符题意;
(2)当a≥
1
2
时,x∈(1,+∞)时,h′(x)>0恒成立.
∴h(x)在(1,+∞)上是增函数,且h(x)∈(h(1),+∞),不符题意;
(3)当a≤0时,x∈(1,+∞)时,恒有h′(x)<0,故h(x)在(1,+∞)上是减函数,
于是“h(x)<0对任意x∈(1,+∞)都成立”的充要条件是h(1)≤0,即a-(2a+1)≤0,
解得a≥-1,故-1≤a≤0.
综上所述,a的取值范围是[-1,0].
点评:本题考查利用导数研究函数的单调性、函数的最值,考查恒成立问题,考查分类讨论思想,考查学生综合运用知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式x2+4x+6≥0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x-
π
6
),若x∈[0,
π
2
]时函数y=f(x)+a的最小值为-2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin
x
2
1
2
)
b
=(
3
cos
x
2
-sin
x
2
,1)
,函数f(x)=
a
b
,△ABC三个内角A,B,C的对边分别为a,b,c.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)若f(B+C)=1,a=
3
,b=1
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(tanAtanC-1)=1.
(Ⅰ)求B的大小;
(Ⅱ)若a+c=
3
3
2
b=
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1
1+sinα
+
1
1-sinα

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x|x=3n,n∈N*,n≤5},集合A={x|x2-px+27=0},集合B={x|x2-15x+q=0},且A∪∁uB={3,9,12,15},求p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1+cosA
+
1-cosA

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x≤10},B={x|x≥a},且A∪B=R,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案