精英家教网 > 高中数学 > 题目详情
化简:
1
1+sinα
+
1
1-sinα
考点:三角函数的化简求值
专题:三角函数的求值
分析:根据三角函数之间的关系,利用sin2α+cos2α=1将式子进行通法即可得到结论.
解答: 解:
1
1+sinα
+
1
1-sinα
=
1+sin?α+1-sin?α
(1-sin?α)(1+sin?α)
=
2
1-cos?2α
=
2
sin?2α
点评:本题忽悠考查三角函数的化简,利用sin2α+cos2α=1是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tan100°=k,则sin80°的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠C=45°,D为BC中点,BC=2.记锐角∠ADB=α.且满足cos2α=-
1
25

(1)求cosα;
(2)求BC边上高的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直角△ABC的直角边BC=a,AC=b,斜边AB=c,且a<b,现分别以直线BC,AC和AB为轴将直角△绕轴旋转一周,所得三个旋转体体积分别为V1,V2和V3,试比较V1,V2,V3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+lnx.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设函数g(x)=(2a+1)x,若当x∈(1,+∞)时,f(x)<g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,求sin2α+2cos2α-sinαcosα+1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足||z-2i|-3|+|z-2i|-3=0,求z在复平面上对应的点组成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|lgx|   0<x≤10
-
1
5
x+3   x>10
,若a,b,c均不相等,且f(a)=f(b)=f(c),则abc的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,其中正(主)视图与侧(左)视图的边界均为直角三角形,俯视图的边界为直角梯形,则该几何体的体积是(  )
A、
1
3
B、
1
2
C、1
D、3

查看答案和解析>>

同步练习册答案