分析 作出不等式组对应的平面区域,利用目标函数z=2x+y的最小值为3,建立条件关系即可求出m的值,然后求解最大值即可.
解答
解:目标函数z=2x+y的最小值为3,
∴y=-2x+z,要使目标函数z=-2x+y的最小值为3,
作出不等式组对应的平面区域如图:
则目标函数经过点A截距最小,
由$\left\{\begin{array}{l}{x=2}\\{2x+y=3}\end{array}\right.$,解得A(2,-1),同时A也在直线-2x+y+m=0,
解得m=5,
目标函数z=2x+y经过B时取得最大值
由$\left\{\begin{array}{l}{x+y=4}\\{-2x+y+5=0}\end{array}\right.$,解得B(3,1),
z的最大值为:7.
故答案为:7.
点评 本题主要考查线性规划的应用,根据目标函数z=3x+y的最小值为5,确定平面区域的位置,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 40 | B. | 60 | C. | 120 | D. | 240 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{2}$ | B. | $\frac{9}{4}$ | C. | 1 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4\sqrt{2}}{9}$ | B. | -$\frac{2\sqrt{2}}{9}$ | C. | $\frac{2\sqrt{2}}{9}$ | D. | $\frac{4\sqrt{2}}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,12) | B. | (2,3) | C. | (2,3] | D. | [-1,12] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,-1] | B. | [-1,2] | C. | [-1,1] | D. | [1,2] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com