精英家教网 > 高中数学 > 题目详情
( )
A.B.C.D.
B
由题设中的条件y2=2px(p>0)的焦点与椭圆=1的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程,对比四个选项选出正确选项.
解答:解:由题意椭圆=1,故它的右焦点坐标是(2,0),
又的y2=2px(p>0)的焦点与椭圆=1的右焦点重合,
故p=4
∴抛物线的准线方程为x=-2
故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知两定点F1(-1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.线段

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 若椭圆C的一个焦点为,其短轴上的一个端点到距离为
(Ⅰ)求椭圆及其“伴随圆”的方程;
(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;
(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径忽略不计)从点A沿直线出发,经椭圆壁反射后第一次回到点A时,小球经过的路程是_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆x2sinα-y2cosα=1(0<α<2π)的焦点在x轴上,则α的取值范围是(  )
A.(,π)B.(C.(,π)D.(

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是实数,是抛物线的焦点,直线
(1)若,且在直线上,求抛物线的方程;
(2)当时,设直线与抛物线交于两点,过
分别作抛物线的准线的垂线,垂足为,连
轴于点,连结轴于点
①证明:
②若交于点,记△、四边形
、△的面积分别为,问
是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知点,直线为平面上的动点,过点作直线的垂线,垂足为点,且.
(1)求动点的轨迹的方程;          
(2)轨迹上是否存在一点使得过的切线与直线平行?若存在,求出的方程,并求出它与的距离;若不存在,请说明理由.      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
求与椭圆有共同焦点,且过点的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.设分别是椭圆的左、右焦点.若点在椭圆上,且,则                                                            
A.B.C.D.

查看答案和解析>>

同步练习册答案