精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=lnx
(Ⅰ)若函数F(x)=tf(x)与函数g(x)=x2-1在点x=1处有共同的切线l,求t的值;
(Ⅱ)证明:$|{f(x)-x}|>\frac{f(x)}{x}+\frac{1}{2}$;
(Ⅲ)若不等式mf(x)≥a+x对所有的$m∈[{0,\frac{3}{2}}],x∈[{1,{e^2}}]$都成立,求实数a的取值范围.

分析 (Ⅰ)求函数的导数,根据导数的几何意义建立方程关系即可得到结论.
(Ⅱ)构造函数h(x)=f(x)-x和G(x)=$\frac{f(x)}{x}+\frac{1}{2}$,求函数的导数,分别求出函数的最值进行比较比较即可.
(Ⅲ)利用参数分离法,转化为以m为变量的函数关系进行求解即可.

解答 解:(Ⅰ)g′(x)=2x,F(x)=tf(x)=tlnx,
F′(x)=tf′(x)=$\frac{t}{x}$,
∵F(x)=tf(x)与函数g(x)=x2-1在点x=1处有共同的切线l,
∴k=F′(1)=g′(1),
即t=2,
(Ⅱ)令h(x)=f(x)-x,则h′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,则h(x)在(0,1)上是增函数,在(1,+∞)上是减函数,
∴h(x)的最大值为h(1)=-1,
∴|h(x)|的最大值是1,
设G(x)=$\frac{f(x)}{x}+\frac{1}{2}$=$\frac{lnx}{x}$+$\frac{1}{2}$,G′(x)=$\frac{1-lnx}{{x}^{2}}$,
故G(x)在(0,e)上是增函数,在(e,+∞)上是减函数,
故G(x)max=$\frac{1}{e}$+$\frac{1}{2}$<1,
∴$|{f(x)-x}|>\frac{f(x)}{x}+\frac{1}{2}$;
(Ⅲ)不等式mf(x)≥a+x对所有的$m∈[{0,\frac{3}{2}}],x∈[{1,{e^2}}]$都成立,
则a≤mlnx-x对所有的$m∈[{0,\frac{3}{2}}],x∈[{1,{e^2}}]$都成立,
令H(x)=mlnx-x,$m∈[{0,\frac{3}{2}}],x∈[{1,{e^2}}]$是关于m的一次函数,
∵x∈[1,e2],∴lnx∈[0,2],
∴当m=0时,H(m)取得最小值-x,
即a≤-x,当x∈[1,e2]时,恒成立,
故a≤-e2

点评 本题主要考查函数单调性的应用,以及不等式恒成立问题,根据条件构造函数,求出函数的单调性和最值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在一次水稻试验田验收活动中,将甲、乙两种水稻随机抽取各6株样品,单株籽粒数制成如图所示的茎叶图:
(Ⅰ)一粒水稻约为0.1克,每亩水稻约为6万株,估计甲种水稻亩产约为多少公斤?
(Ⅱ)分别从甲、乙两种水稻样品中任取一株,甲品种中选出的籽粒数记为a,乙品种中选出的籽粒数记为b,求a≥b的概率.
(Ⅲ)如从甲品种的6株中任选2株,记选到的超过187粒的株数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-7≤0}\\{2x+y-5≥0}\end{array}\right.$,则z=x-2y的最小值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数学活动小组由12名同学组成,现将这12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出一名组长,则不同的分配方案有(  )种.
A.$\frac{{C}_{12}^{3}{C}_{9}^{3}{C}_{6}^{3}}{{A}_{3}^{3}}$A${\;}_{4}^{4}$B.C${\;}_{12}^{3}$C${\;}_{9}^{3}$C${\;}_{6}^{3}$34
C.$\frac{{C}_{12}^{3}{C}_{9}^{3}{C}_{6}^{3}}{{A}_{4}^{4}}$43D.C${\;}_{12}^{3}$C${\;}_{9}^{3}$C${\;}_{6}^{3}$43

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,且$asinB-\sqrt{3}bcosA=0$.
(1)若cosC=$\frac{4}{5}$,求cos(A+C);
(2)若b+c=5,A=$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,且$cosA=\frac{1}{3}$
(Ⅰ)求cosC的值;
(Ⅱ)若△ABC的面积为$5\sqrt{2}$,求sinB及边b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线y=$\sqrt{11}$x与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A、B两点,若椭圆上存在点P,使得△ABP是等边三角形,则椭圆C的离心率e=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.复数z1=2sin$θ-\sqrt{3}i$,z2=1+(2cosθ)i,i为虚数单位,θ∈[$\frac{π}{3},\frac{π}{2}$];
(1)若z1•z2是实数,求cos2θ的值;
(2)若复数z1、z2对应的向量分别是$\overrightarrow{a}$、$\overrightarrow{b}$,存在θ使等式($λ\overrightarrow{a}-\overrightarrow{b}$)•($\overrightarrow{a}-λ\overrightarrow{b}$)=0成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某校数学课外活动小组有高一学生10人,高二学生8人,高三学生7人,每一年级各选1名组长,不同的选法种数为(  )
A.25B.26C.560D.230

查看答案和解析>>

同步练习册答案