【题目】如图,四边形为菱形,四边形为平行四边形,设与相交于点, .
(1)证明:平面平面;
(2)若与平面所成角为60°,求二面角的余弦值.
【答案】(1)见解析;(2).
【解析】试题分析:(1)根(1)要证面面垂直,需要找线面垂直,本题中重点分析线段,利用条件底面是菱形可得,通过全等可知,从而,故是平面的垂线,从而得证;(2)涉及二面角的计算,一般需要建系设点,计算平面的法向量,利用二面角与法向量夹角之间的关系处理,需要注意建系时分析清楚哪三条线互相垂直.
试题解析:
(1)证明:连接,
∵四边形为菱形,
∵,
在和中,
, ,
∴,
∴,
∴,
∵,
∴平面,
∵平面,
∴平面平面;
(2)
解法一:过作垂线,垂足为,连接,易得为与面所成的角,
∴,
∵,
∴平面,
∴为二面角的平面角,
可求得,
在中由余弦定理可得: ,
∴二面角的余弦值为;
解法二:如图,在平面内,过作的垂线,交于点,由(1)可知,平面平面,
∴平面,
∴直线两两互相垂直,
分别为轴建立空间直角坐标系,
易得为与平面所成的角,∴,
则,
,
设平面的一个法向量为,则
且,
∴,且
取,可得平面的一个法向量为,
同理可求得平面的一个法向量为,
∴,
∴二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图,在梯形中, , , ,四边形为矩形,平面平面, .
(Ⅰ)求证: 平面;
(Ⅱ)点在线段上运动,设平面与平面所成锐二面角为,试求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,侧面ABB1A1为菱形,∠DAB=∠DAA1 .
(Ⅰ)求证:A1B⊥BC;
(Ⅱ)若AD=AB=3BC,∠A1AB=60°,点D在平面ABB1A1上的射影恰为线段A1B的中点,求平面DCC1D1与平面ABB1A1所成锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x3+ax2+bx+ (a,b是实数),且f′(2)=0,f(﹣1)=0.
(1)求实数a,b的值;
(2)当x∈[﹣1,t]时,求f(x)的最大值g(t)的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是根据某班50名同学在某次数学测验中的成绩(百分制)绘制的概率分布直方图,其中成绩分组区间为:[40,50),[50,60),…,[80,90),[90,100].
(1)求图中a的值;
(2)计算该班本次的数学测验成绩不低于80分的学生的人数;
(3)根据频率分布直方图,估计该班本次数学测验成绩的平均数与中位数(要求中位数的估计值精确到0.1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左、右焦点分别为、, 为椭圆的右顶点, , 分别为椭圆的上、下顶点.线段的延长线与线段交于点,与椭圆交于点.(1)若椭圆的离心率为, 的面积为12,求椭圆的方程;(2)设 ,求实数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某中学联盟举行了一次“盟校质量调研考试”活动,为了解本次考试学生的某学科成绩情况,从中抽取部分学生的分数(满分为分,得分取正整数,抽取学生的分数均在之内)作为样本(样本容量为)进行统计,按照的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在的数据)
(Ⅰ)求样本容量和频率分布直方图中的的值;
(Ⅱ)在选取的样本中,从成绩在分以上(含分)的学生中随机抽取名学生参加“省级学科基础知识竞赛”,求所抽取的名学生中恰有一人得分在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)求函数 的定义域;
(2)若存在a∈R,对任意 ,总存在唯一x0∈[﹣1,2],使得f(x1)=g(x0)成立.求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com