精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的左、右焦点分别为 为椭圆的右顶点, 分别为椭圆的上、下顶点.线段的延长线与线段交于点,与椭圆交于点.(1)若椭圆的离心率为 的面积为12,求椭圆的方程;(2)设 ,求实数的最小值.

【答案】(1) (2)

【解析】试题分析:(1)由椭圆的离心率为,得是等腰直角三角形,再由勾股定理及椭圆定义得 ,因此,解得 .(2)因为,所以,即,再由直线的方程与直线的方程求出交点,可得P点坐标: ,最后代入椭圆方程化简得,转化为离心率 利用基本不等式求最小值.

试题解析:解:(1)是等腰直角三角形,由勾股定理知,

解得,

,即 .

所以椭圆的方程为.

(2)设,因为直线的方程为,直线的方程为

所以联立方程解得.

因为,所以,所以

所以,所以

代入椭圆的方程,得

所以

因为所以,所以当且仅当时,

取到最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱ABC-A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1CAC1

(Ⅰ)求证:平面AA1B1BBB1C1C

(Ⅱ)若DCC1中点,ADB是二面角A-CC1-B的平面角,求直线AC1与平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.

(1)求证:AB∥平面DEG;
(2)求证:BD⊥EG;
(3)求二面角C﹣DF﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为菱形,四边形为平行四边形,设相交于点

1)证明:平面平面

2)若与平面所成角为60°,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示,对应关系f是从A到B的映射的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意实数x,y满足f(x)+f(y)=f(x+y)+3,f(3)=6,当x>0 时,f(x)>3,那么,当f(2a+1)<5时,实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+c的图像如图,直线y=0在原点处与函数图像相切,且此切线与函数图像所围成的区域(阴影)面积为
(1)求f(x)的解析式
(2)若常数m>0,求函数f(x)在区间[﹣m,m]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知f(x)=x2﹣2x+2,在[ ,m2﹣m+2]上任取三个数a,b,c,均存在以 f(a),f(b),f(c)为三边的三角形,则m的取值范围为(
A.(0,1)
B.[0,
C.(0, ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名同学在5次英语口语测试中的成绩统计如图的茎叶图所示.

(注:样本数据x1 , x2 , …,xn的方差s2= [ + +…+ ],其中 表示样本均值)
(1)现要从中选派一人参加英语口语竞赛,从两同学的平均成绩和方差分析,派谁参加更合适;
(2)若将频率视为概率,对学生甲在今后的三次英语口语竞赛成绩进行预测,记这三次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

同步练习册答案