【题目】甲、乙两名同学在5次英语口语测试中的成绩统计如图的茎叶图所示.
(注:样本数据x1 , x2 , …,xn的方差s2= [ + +…+ ],其中 表示样本均值)
(1)现要从中选派一人参加英语口语竞赛,从两同学的平均成绩和方差分析,派谁参加更合适;
(2)若将频率视为概率,对学生甲在今后的三次英语口语竞赛成绩进行预测,记这三次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.
【答案】
(1)
解: = =86…(1分), = =86…
= =37.6
= =42.4
因为 , < ,所以派甲去更合适
(2)
解:甲高于80分的频率为 ,从而每次成绩高于80分的概率P=
ξ取值为0,1,2,3,ξ~(3, )
直接计算得P(ξ=0)= = ;P(ξ=1)= = ;
P(ξ=2)= = ;P(ξ=3)= = ,
ξ的分布列为
ξ | 0 | 1 | 2 | 3 |
P |
所以,Eξ=0× +1× +2× +3× =
【解析】(1)根据茎叶图的数据,利用平均数及方差公式,即可求得结论;(2)求得ξ取值及ξ~(3, ),求出相应概率,可得ξ的分布列,从而可求数学期望Eξ.
【考点精析】认真审题,首先需要了解茎叶图(茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少),还要掌握平均数、中位数、众数(⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左、右焦点分别为、, 为椭圆的右顶点, , 分别为椭圆的上、下顶点.线段的延长线与线段交于点,与椭圆交于点.(1)若椭圆的离心率为, 的面积为12,求椭圆的方程;(2)设 ,求实数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数).在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴非负半轴为极轴)中,直线的方程为.
(1)求曲线的普通方程及直线的直角坐标方程;
(2)设是曲线上的任意一点,求点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)求函数 的定义域;
(2)若存在a∈R,对任意 ,总存在唯一x0∈[﹣1,2],使得f(x1)=g(x0)成立.求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|﹣2≤x≤5},B={x|m﹣4≤x≤3m+3}.
(1)若AB,求实数m的取值范围;
(2)若A∩B=B,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请先阅读:
在等式cos2x=2cos2x﹣1(x∈R)的两边求导,得:(cos2x)′=(2cos2x﹣1)′,由求导法则,得(﹣sin2x)2=4cosx(﹣sinx),化简得等式:sin2x=2cosxsinx.
(1)利用上题的想法(或其他方法),结合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整数n≥2),证明: .
(2)对于正整数n≥3,求证:
(i) ;
(ii) ;
(iii) .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0且a≠1,函数f(x)=loga(x+1), ,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)﹣2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用min{a,b,c}表示a,b,c三个数中的最小值,设f(x)=min{2x , x+2,10﹣x}(x≥0),则f(x)的最大值为( )
A.7
B.6
C.5
D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com