精英家教网 > 高中数学 > 题目详情
16.已知sin(x+$\frac{π}{2}$)=$\frac{1}{3}$,则cos2x=(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{7}{9}$D.$\frac{7}{9}$

分析 由条件利用诱导公式、二倍角的余弦公式,化简所给式子的值,可得结果.

解答 解:∵sin(x+$\frac{π}{2}$)=cosx=$\frac{1}{3}$,则cos2x=2cos2x-1=-$\frac{7}{9}$,
故选:C.

点评 本题主要考查诱导公式、二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=1-$\sqrt{3}$cos2x-2sin2($\frac{π}{4}$-x),x∈R.求:
(Ⅰ)f(x)的最小正周期;
(Ⅱ)f(x)在闭区间[-$\frac{π}{3}$,$\frac{π}{2}$]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知动圆过定点A(3,0),且与圆(x+3)2+y2=64相切,则动圆的圆心P的轨迹是(  )
A.B.椭圆C.抛物线D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.运行如图所示的程序框图,输出的S=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直角三角形PMN的直角顶点为P,且M、N的坐标分别为(1,5),(-3,1),求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三角形ABC中,AB=x,BC=1,O是AC的中点,∠BOC=45°,记点C到AB的距离为h(x).
(1)求h(x)的表达式,并注明x的取值范围;
(2)求h(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆w:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点(0,$\sqrt{2}$),椭圆w上任意一点到两焦点的距离之和为4.
(Ⅰ)求椭圆w的方程;
(Ⅱ)如图,设直线l:y=kx(k≠0)与椭圆w交于P,A两点,过点P(x0,y0)作PC⊥x轴,垂足为点C,直线AC交椭圆w于另一点B.
①用直线l的斜率k表示直线AC的斜率;
②写出∠APB的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{1}{2}$x,则双曲线的离心率为(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{5}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等比数列{an}满足an+1+an=10•4n-1(n∈N*),数列{bn}的前n项和为Sn,且bn=log2an
(I)求bn,Sn
(Ⅱ)设${c_n}={b_n}•({\frac{{2{S_n}}}{n}+1})$,求数列$\left\{{{a_n}+\frac{1}{c_n}}\right\}$的前n项和Tn

查看答案和解析>>

同步练习册答案