精英家教网 > 高中数学 > 题目详情
6.已知数列{an}中a1+a2+a3+…+an=2n-1,求a12+a22+a32+…+an2的值.

分析 由a1+a2+a3+…+an=2n-1,求出数列{an}是首项是1,公比是2的等比数列,进一步得到数列{an2}是等比数列,应用等比数列的前n项和公式得到结果.

解答 解:由a1+a2+a3+…+an=2n-1,得${S}_{n}={2}^{n}-1$,
当n=1时,a1=1,
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}=({2}^{n}-1)-({2}^{n-1}-1)$=2n-1
验证n=1时成立,
∴${a}_{n}={2}^{n-1}$,
则$\frac{{a}_{n+1}}{{a}_{n}}=\frac{{2}^{n}}{{2}^{n-1}}=2$,
∴数列{an}是首项是1,公比是2的等比数列,
则数列{an2}是首项是1,公比是4的等比数列,
∴a12+a22+a32+…+an2=$\frac{1×(1-{4}^{n})}{1-4}=\frac{1}{3}({4}^{n}-1)$.

点评 本题考查数列递推式,考查了等比关系的确定,训练了等比数列前n项和的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.随机向边长为5,5,6的三角形中投一点P,则点P到三个顶点的距离都不小于2的概率是$1-\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆的焦点是F1(-2,0),F2(2,0),点P为椭圆上一点,且|PF2|,|F1F2|,|PF1|成等差数列,求此椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,若sinA、sinB、sinC成公比为q的等比数列,则q的取值范围为($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p1:函数y=($\frac{1}{2}$)x-($\frac{1}{2}$)-x在R上为减函数,p2:函数y=($\frac{1}{2}$)x+($\frac{1}{2}$)-x在R上为增函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是(  )
A.q1,q3B.q2,q3C.q1,q4D.q2,q4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$\overrightarrow a$=(1,2),$\overrightarrow b$=(x,y),$\overrightarrow c$=$\overrightarrow a$+$\overrightarrow b$.若$\overrightarrow b$⊥$\overrightarrow c$,则点(x,y)的轨迹方程为(  )
A.(x-$\frac{1}{2}$)2+(y-1)2=$\frac{5}{4}$B.${(x+\frac{1}{2})^2}+{(y-1)^2}=\frac{5}{4}$C.${(x-\frac{1}{2})^2}+{(y+1)^2}=\frac{5}{4}$D.${(x+\frac{1}{2})^2}+{(y+1)^2}=\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分图象如图所示,f(x0)=-f(0),则正确的选项是(  )
A.φ=$\frac{π}{6}$,x0=1B.φ=$\frac{π}{6}$,x0=$\frac{4}{3}$C.φ=$\frac{π}{3}$,x0=1D.φ=$\frac{π}{3}$,x0=$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若α∈[-$\frac{π}{4},\frac{π}{4}$],β∈[-$\frac{π}{8}$,$\frac{π}{8}$],且满足$\left\{\begin{array}{l}{{α}^{3}+sinα-2k=0}\\{4{β}^{3}+sinβcosβ+k=0}\end{array}\right.$,k∈R,则cos(α+2β)的值为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{2}$sin(ωx+$\frac{π}{4}$)+b(ω>0)的最小正周期为π,最大值为2$\sqrt{2}$.
(1)求实数ω,b的值,并写出相应的f(x)的解析式;
(2)是否存在x∈[0,π],满足f(x)=2$\sqrt{2}$,若存在,求出x的值;若不存在,说明理由;
(3)求函数F(x)=f(x)-f(x-$\frac{π}{4}$)的最大值、最小值.

查看答案和解析>>

同步练习册答案