精英家教网 > 高中数学 > 题目详情
17.已知椭圆的焦点是F1(-2,0),F2(2,0),点P为椭圆上一点,且|PF2|,|F1F2|,|PF1|成等差数列,求此椭圆的标准方程.

分析 由已知条件利用椭圆定义和等差数列性质列出方程组,求出a,b,由此能求出椭圆的标准方程.

解答 解:∵椭圆的焦点是F1(-2,0),F2(2,0),点P为椭圆上一点,且|PF2|,|F1F2|,|PF1|成等差数列,
∴$\left\{\begin{array}{l}{c=2}\\{2a=|P{F}_{1}|+|P{F}_{2}|=2|{F}_{1}{F}_{2}|=8}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,
解得a=4,c=2,b2=16-4=12,
∴此椭圆的标准方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1.

点评 本题考查椭圆的标准方程的求法,是基础题,解题时要认真审题,注意椭圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合A={0,1,2},B={m,3,4},若A∩B={2},则实数m=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设平面向量$\overrightarrow{OA}$、$\overrightarrow{OB}$满足|$\overrightarrow{OA}$|=2、|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}•\overrightarrow{OB}$=0,点P满足$\overrightarrow{OP}=\frac{m}{{\sqrt{2{m^2}+2{n^2}}}}\overrightarrow{OA}+\frac{{\sqrt{2}n}}{{\sqrt{{m^2}+{n^2}}}}\overrightarrow{OB}$,其中m≥0,n≥0,则点P所表示的轨迹长度为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{π}{2}$D.$\frac{{\sqrt{2}π}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在一个木箱中装有编号分别为1,2,3,4,5的完全一样的5个球,现从中同时取出两个球,设X为取出的两球的最大编号,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2016年1月1日,我国实施“全面二孩”政策,中国社会科学院在某地(已婚男性约15000人)随机抽取了150名已婚男性,其中愿意生育二孩的有100名,经统计,该100名男性的年龄情况对应的频率分布直方图如下;
(1)求这100名已婚男性的年龄平均值$\overline{x}$和样本方差s2(同组数据用区间的中点值代替,结果精确到个位);
(2)(Ⅰ)试估计该地愿意生育二孩的已婚男性人数;
     (Ⅱ)由直方图可以认为,愿意生育二孩的已婚男性的年龄ξ服从正态分布N(μ,δ2),其中μ近似样本的平均值$\overline{x}$,δ2近似为样本的方差s2,试问:该地愿意生育二孩且处于较佳的生育年龄ξ(ξ∈(26,31))的总人数约为多少?(结果精确到个位)
附:若ξ~N(μ,δ2),则P(μ-δ<ξ<μ+δ)=0.6826,P(μ-2δ<ξ<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=lgx+$\frac{2}{lgx}$(0<x<1)的值域是$(-∞,-2\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某城区按以下规定收取水费:若每月用水不超过20m3,则每立方米水费按2元收取;若超过20m3,则超过的部分按每立方米3元收取,如果某户居民在某月所交水费的平均价为每立方米2.20元,则这户居民这月共用水(  )
A.46m3B.44m3C.26m3D.25m3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}中a1+a2+a3+…+an=2n-1,求a12+a22+a32+…+an2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前项和为Sn,S4=20,S6=42
(1)求数列{an}的通项公式和前n项的和Sn
(2)若令bn=$\frac{1}{{a}_{n}^{2}-1}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案