精英家教网 > 高中数学 > 题目详情
9.已知Sn为数列{an}的前n项和,若a2=3且Sn+1=2Sn,则a4等于(  )
A.6B.12C.16D.24

分析 Sn+1=2Sn,n≥2时,an+1=Sn+1-Sn=2Sn-2Sn-1=2an,再利用等比数列的通项公式即可得出.

解答 解:∵Sn+1=2Sn,∴n≥2时,an+1=Sn+1-Sn=2Sn-2Sn-1=2an
∴数列{an}从第二项起为等比数列,公比为2.
∴${a}_{4}={a}_{2}×{2}^{2}$=3×4=12.
故选:B.

点评 本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.某三棱锥的三视图如图所示,则该三棱锥外接球的表面积为(  )
A.B.25πC.50πD.100π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.关于下面等高条形图说法正确的有(  )
A.在被调查的 x 1中,y 1占70%B.在被调查的 x 2中,y 2占20%
C.1与 y 1有关D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.把离心率e=$\frac{{\sqrt{5}+1}}{2}$的双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$称为黄金双曲线.给出以下几个说法:
①双曲线x2-$\frac{{2{y^2}}}{{\sqrt{5}-1}}$=1是黄金双曲线; 
②若双曲线上一点P(x,y)到两条渐近线的距离积等于$\frac{a^3}{c}$,则该双曲线是黄金双曲线;   
③若F1,F2为左右焦点,A1,A2为左右顶点,B1(0,b),B2(0,-b)且∠F1B1A2=900,则该双曲线是黄金双曲线;  
④.若直线l经过右焦点F2交双曲线于M,N两点,且MN⊥F1F2,∠MON=90°,则该双曲线是黄金双曲线;
其中正确命题的序号为②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以坐标原点为极点,x轴的正半轴为极轴建立坐标系,已知曲线C:ρ=2sinθ与直线l:$\left\{\begin{array}{l}{x=1+t}\\{y=2-t}\end{array}\right.$
(Ⅰ)求曲线C与直线l的普通方程;
(Ⅱ)求与直线l平行,且与圆相切的直线l′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,既是奇函数,又在定义域上是增函数的是(  )
A.y=x2B.y=x|x|C.y=x+$\frac{2}{x}$D.y=x-$\frac{4}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)满足f(1+x)=-f(1-x),f(x)=f(6-x),当x∈[1,3]时,$f(x)=\frac{1}{2}(x-1)$.
(1)在网格中画出函数f(x)在[-5,11]上的图象;
(2)若直线y=k(x+3)与函数f(x)的图象的交点个数为5,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,在△ABC中,I为△ABC的内心,AI交BC于D,交△ABC外接圆于E
求证:
(1)IE=EC
(2)IE2=ED•EA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$f(x)=\sqrt{x(9-x)}$的定义域是{x|0≤x≤9}.

查看答案和解析>>

同步练习册答案