精英家教网 > 高中数学 > 题目详情
14.下列函数中,既是奇函数,又在定义域上是增函数的是(  )
A.y=x2B.y=x|x|C.y=x+$\frac{2}{x}$D.y=x-$\frac{4}{x}$

分析 根据奇函数、偶函数的定义,分段函数和二次函数的单调性,以及单调区间的连续性即可判断每个选项正误,从而找出正确选项.

解答 解:A.y=x2是偶函数,∴该选项错误;
B.(-x)|-x|=-x|x|;
∴y=x|x|是奇函数;
$y=x|x|=\left\{\begin{array}{l}{{x}^{2}}&{x≥0}\\{-{x}^{2}}&{x<0}\end{array}\right.$;
∴y=x|x|在定义域上是增函数;
∴该选项正确;
C.y=x$+\frac{2}{x}$在定义域上没有单调性,∴该选项错误;
D.$y=x-\frac{4}{x}$的定义域为(-∞,0)∪(0,+∞);
∴该函数在定义域上没有单调性.
故选B.

点评 考查奇函数、偶函数的定义,分段函数及二次函数的单调性,以及函数单调区间的连续性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.集合P={x|x+$\frac{1}{x}$≤2,x∈Z},集合Q={x|x2+2x-3>0},则P∩∁RQ=(  )
A.[-3,0)B.{-3,-2,-1}C.{-3,-2,-1,0,1}D.{-3,-2,-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A(1,0,0)、B(0,1,0)、C(0,0,1),则平面ABC的一个单位法向量是(  )
A.($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$)B.($\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)C.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)D.(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的首项为a1=$\frac{1}{4}$,公比q=$\frac{1}{4}$的等比数列,设bn+2=3log${\;}_{\frac{1}{4}}$an(n∈N*).
(Ⅰ)求证:{bn}是等差数列;
(Ⅱ)令cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知Sn为数列{an}的前n项和,若a2=3且Sn+1=2Sn,则a4等于(  )
A.6B.12C.16D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=Asin({ωx+ϕ})({A>0,ω>0,|ϕ|<\frac{π}{2}})$的图象(部分)如图所示.
(I)求函数f(x)的解析式;
( II)求函数f(x)在区间$[-\frac{1}{2},\frac{1}{2}]$上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c分别为△ABC三个内角A,B,C的对边,且$3cosC+\sqrt{3}sinC=\frac{3a}{b}$
(Ⅰ)求∠B的大小;
(Ⅱ)若a=2,AC边上的垂直平分线交边AB于点D且△DBC的面积为$\frac{{\sqrt{3}}}{2}$,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在数列{an}中,若存在非零整数T,使得an+T=am对于任意的正整数m均成立,那么称数列{an}为周期数列,其中T叫做数列{an}的周期,若数列xn满足xn+1=|x${\;}_{{n}_{\;}}$-xn-1|(n≥2,n∈N),如x1=1,λ2=a(a∈R,a≠0),当数列xn的周期最小时,该数列的前2015项的和是1343a+1(a≥1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=g(x)的图象是由函数f(x)=sin2x-$\sqrt{3}$cos2x的图象向左平移$\frac{1}{6}$个周期而得到的,则函数y=g(x)的图象与直线x=0,x=$\frac{π}{3}$,x轴围成的封闭图形的面积为(  )
A.πB.1C.$\frac{3}{2}$D.3

查看答案和解析>>

同步练习册答案