精英家教网 > 高中数学 > 题目详情
4.利用计算器算出自变量和函数值的对应值如表,则方程2x-x2=0的一个根所在区间为(1.8,2.2).
x0.20.61.01.41.82.22.63.03.4
y=2x1.1491.5162.02.6393.4824.5956.0638.010.556
y=x20.040.361.01.963.244.846.769.011.56

分析 本题考查的是方程零点存在的大致区间的判断问题.在解答时,应先将方程的问题转化为函数零点大致区间的判断问题,结合零点存在性定理即可获得解答.

解答 解:令f(x)=2x-x2
由表知f(1.8)=3.482-3.24>0,f(2.2)=4.595-4.84<0,
∴方程2x=x2的一个根所在的区间为(1.8,2.2).
故答案为:(1.8,2.2).

点评 本题考查的是方程零点存在的大致区间的判断问题.在解答的过程当中充分体现了函数与方程的思想、问题转化的思想以及数据处理的能力.值得同学们体会和反思.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知不重合的直线m、l和平面α、β,且m⊥α,l?β.给出下列命题,其中正确命题的个数是(  )
①若α∥β,则m⊥l;
②若α⊥β,则m∥l;
③若m⊥l,则α∥β;
④若m∥l,则α⊥β.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\left\{\begin{array}{l}{-2x+y≤2}\\{x-2y≤2}\\{x+y≤5}\\{x≥0,y≥0}\end{array}\right.$,则-x+y的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,$\overrightarrow{BD}$=$\frac{3}{4}$$\overrightarrow{BC}$,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则向量$\overrightarrow{AD}$=(  )
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$B.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$C.$\frac{7}{4}$$\overrightarrow{a}$-$\frac{3}{4}$$\overrightarrow{b}$D.-$\frac{7}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x,y∈R+,满足$\frac{4}{x}$-$\frac{1}{y}$=1,不等式(x-y)a+2a2-3≥0恒成立,则实数a的取值范围是(-∞,-$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义:若z2=a+bi(a,b∈R,i为虚数单位),则称复数z是复数a+bi的平方根.根据定义,则复数-3+4i的平方根是1+2i或-1-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.六人按下列要求站一横排,分别有多少种不同的站法?
(1)甲不站两端;
(2)甲、乙必须相邻;
(3)甲、乙不相邻;
(4)甲、乙按自左至右顺序排队(可以不相邻);
(5)甲、乙站在两端.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知正数x,y满足$\left\{\begin{array}{l}{2x-y≤0}\\{x-3y+5≥0}\end{array}\right.$,则z=-2x-y的最小值为(  )
A.-5B.5C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为(  )
A.5个B.10个C.20个D.45个

查看答案和解析>>

同步练习册答案