精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,求证:平面ACC1A1⊥平面A1BD.
考点:平面与平面垂直的判定
专题:证明题,空间位置关系与距离
分析:欲证平面ACC1A1⊥平面A1BD,根据面面垂直的判定定理可知在平面A1BD内一直线与平面ACC1A1垂直,而根据线面垂直的判定定理可得BD⊥平面ACC1A1
解答: 证明:∵正方体中AA1⊥平面ABCD
∴BD⊥AC,BD⊥A1A,AC∩A1A=A
∴BD⊥平面ACC1A1
而BD?平面A1BD
∴平面ACC1A1⊥平面A1BD.
点评:本小题主要考查空间中的线面关系,考查面面垂直的判定,考查识图能力和逻辑思维能力,考查转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图程序的功能是(  )
A、统计十个数据中负数的个数
B、找出十个数据中的负数
C、判断x的符号
D、求十个数据中所有负数的和

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位业务人员、管理人员、后勤服务人员人数之比依次为15:3:2.为了了解该单位职员的某种情况,采用分层抽样方法抽出一个容量为n的样本,样本中业务人员人数为30,则此样本的容量n为(  )
A、20B、30C、40D、80

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别F1、F2焦距为2,且与双曲线
x2
2
-y2=1共顶点.P为椭圆C上一点,直线PF1交椭圆C于另一点Q.
(1)求椭圆C的方程;
(2)若点P的坐标为(0,b),求过P、Q、F2三点的圆的方程;
(3)若
F1P
QF1
,且λ∈[
1
2
,2],求
OP
OQ
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子中装有标号为1,2,3,4的4张标签,随机地选取两张标签,根据下列条件求两张标签上的数字为相邻整数的概率:
(1)标签的选取是无放回的;
(2)标签的选取是有放回的.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是
7
9

(1)求白球的个数;
(2)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A为锐角sinA=
3
5
,tan(A-B)=-
1
2

(1)求tanA及cos2A的值  
(2)求tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x-2,数列{an}的前n项和为Sn,且点(an,2Sn)在函数y=f(x)的图象上;
(1)求数列{an}的通项公式;
(2)设bn=f(an),数列{bn}的前n项和为Tn,若 
T2n+4n
Tn+2n
<an+1+t对任意的n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案