精英家教网 > 高中数学 > 题目详情
设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项的和为Sn,满足S5S6=-15,则a1的取值范围是(  )
A、(-∞,-2
2
]∪[2
2
,+∞)
B、[2
2
,+∞)
C、(-∞,-2
10
]∪[2
10
,+∞)
D、[2
10
,+∞)
考点:等差数列的性质
专题:等差数列与等比数列
分析:由等差数列求和公式结合题意可得关于d的一元二次方程,由△≥0可得a1的不等式,解不等式可得.
解答: 解:由题意可得S5S6+15=0,
∴(5a1+10d)(6a1+15d)+15=0,整理得10d2+9a1d+2a12+1=0
此方程可看作关于d的一元二次方程,它一定有实根,
∴△=(9a12-4×10×(2a12+1)≥0,
整理得a12≥40,解得a1≥2
10
或a1≤-2
10

故选:C
点评:本题考查等差数列的性质和求和公式,涉及一元二次方程根的存在性,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

目标函数z=4y-2x,在条件
-1≤-x+y≤1
0≤x+y≤2
下的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-e-x,其中e是自然对数的底数.
(Ⅰ)证明:f(x)是R上的奇函数;
(Ⅱ)若关于x的不等式mf(x)≤e-x-m-1在(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

光明中学准备组织学生去国家体育场“鸟巢”参观.参观期间,校车每天至少要运送544名学生.该中学后勤集团有7辆小巴、4辆大巴,其中小巴能载16人、大巴能载32人. 已知每辆客车每天往返次数小巴为5次、大巴为3次,每次运输成本小巴为48元,大巴为60元.请问每天应派出小巴、大巴各多少辆,能使总费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=
1
3
x3+
4
3
在点(2,4)处的切线方程是(  )
A、x+4y-4=0
B、x-4y-4=0
C、4x+y-4=0
D、4x-y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的焦点与椭圆x2+3y2=6的右焦点重合,则p的值为(  )
A、-2B、2C、-4D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

5名同学去听同时举行的3个课外知识讲座,每名同学可以自由选择听其中的1个讲座,不同的选择方法数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

使函数f(x)=sin(2x+θ)+
3
cos(2x+θ)的图象关于原点对称,且满足?x1,x2∈[0,
π
4
],恒有(x1-x2)[f(x1)-f(x2)]<0的θ的一个值是(  )
A、
π
3
B、
3
C、
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A=60°,b=1,其面积为
3
,则c等于(  )
A、5
B、
14
C、4
D、3

查看答案和解析>>

同步练习册答案