精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),A、B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0).证明-
a2-b2
a
x0
a2-b2
a
分析:设A、B的坐标分别为(x1,y1)和(x2,y2).因线段AB的垂直平分线与x轴相交,故AB不平行于y轴,即x1≠x2.又交点为P(x0,0),故|PA|=|PB|.把点P坐标代入,同时把A、B代入椭圆方程,最后联立方程即可得到x0关于x1和x2的关系式,最后根据x1和x2的范围确定x0的范围.
解答:证明:设A、B的坐标分别为(x1,y1)和(x2,y2).因线段AB的垂直平分线与x轴相交,故AB不平行于y轴,即x1≠x2.又交点为P(x0,0),故|PA|=|PB|,即
(x1-x02+y12=(x2-x02+y22
∵A、B在椭圆上,
y
2
1
=b2-
b2
a2
x
2
1
y
2
2
=b2-
b2
a2
x
2
2

将上式代入①,得
2(x2-x1)x0=(
x
2
2
-
x
2
1
)
a2-b2
a2

∵x1≠x2,可得x0=
x1+x2
2
a2-b2
a2
.③
∵-a≤x1≤a,-a≤x2≤a,且x1≠x2
∴-2a<x1+x2<2a,
-
a2-b2
a
x0
a2-b2
a
点评:本小题考查椭圆性质、直线方程等知识,以及综合分析能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案