精英家教网 > 高中数学 > 题目详情
在△ABC中,已知AB=2,AC=6,∠BAC=60°,中线AM、BN交于点P,设
AB
=
c
AC
=
b
,求:
(1)用
b
c
表示
AM
BN
CP
,并求|
CP
|
的值;
(2)若直线l是BC的中垂线,O是l上一动点,求
AO
BC
的值.
考点:平面向量数量积的运算,向量的模
专题:平面向量及应用
分析:(1)利用向量的平行四边形法则、三角形的重心定理、数量积的性质即可得出;
(2)利用中垂线的性质可得
OM
BC
=0.再利用向量的三角形法则和数量积的性质可得
AO
BC
=(
OM
+
MA
)•
BC
=
MA
BC
=-
1
2
(
AC
+
AB
)•(
AC
-
AB
)
,即可得出.
解答: 解:(1)设CP交AB于点D.
∵中线AM、BN交于点P,设
AB
=
c
AC
=
b

AM
=
1
2
(
AB
+
AC
)
=
1
2
(
c
+
b
)
BN
=
1
2
(
BA
+
BC
)
=
1
2
(
BA
+
AC
-
AB
)
=
1
2
(-2
AB
+
AC
)
=-
c
+
1
2
b

CP
=
2
3
CD
=
2
3
×
1
2
(
CA
+
CB
)
=
1
3
(-
AC
+
AB
-
AC
)
=-
2
3
b
+
1
3
c

∵AB=2,AC=6,∠BAC=60°,
CP
2
=(-
2
3
b
+
1
3
c
)2
=
4
9
b
2
+
1
9
c
2
-
4
9
b
c

=
4
9
×62+
1
9
×22
-
4
9
×6×2×cos60°

=
124
9

(2)∵OM⊥BC,∴
OM
BC
=0.
AO
=
OM
+
MA
BC
=
AC
-
AB

AO
BC
=(
OM
+
MA
)•
BC

=
MA
BC

=-
1
2
(
AC
+
AB
)•(
AC
-
AB
)

=-
1
2
(
AC
2
-
AB
2
)

=-
1
2
(62-22)

=-16.
点评:本题考查了向量的平行四边形法则、三角形的重心定理、数量积的性质、中垂线的性质、向量的三角形法则等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若0<b<a<1,则在ab,ba,aa,bb中最大值是(  )
A、ba
B、aa
C、ab
D、bb

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD,AB=2BC=2.
(1)求证:BC⊥D1E;
(2)若AA1=
2
,求三棱锥D1-B1CB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是边长为2的正方形,AE⊥面ABCD,DF∥AE,AE=4,G为EC的中点,且GF∥面ABCD.
(Ⅰ)求点B到面EFC的距离;
(Ⅱ)求二面角B-EC-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
1
2
x2
-(1+a)x.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若f(x)≥0对定义域内的任意x恒成立,求实数a的取值范围;
(Ⅲ)证明:对于任意不小于2的正整数n,不等式
1
ln2
+
1
ln3
…+
1
lnn
>1-
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各三角函数式的值.
(1)2cos300°+sin630°
(2)已知tanα=
1
2
,求
2cosα-3sinα
3cosα+4sinα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=aln(x+1)+
1
x+1
+3x-1.
(1)若x≥0时,f(x)≥0恒成立,求实数a的取值范围;
(2)求证:
2
12-1
+
3
22-1
+
4
32-1
+…+
n+1
n2-1
1
4
ln(2n+1)对一切正整数n均成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f(α+
π
3
)=
10
5
,且α∈(0,π),求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
OA
=
a
OB
=
b
a
b
=丨
a
-
b
丨=2,求S△AOB有最大值时
a
b
的夹角.

查看答案和解析>>

同步练习册答案