精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知向量,把其中所满足的关系式记为若函数为奇函数,且当有最小值 (Ⅰ)求函数的表达式;(Ⅱ)设满足如下关系:求数列的通项公式,并求数列n项的和.
(Ⅰ)   (Ⅱ)
(Ⅰ)由p//q,得
                                 …………2分
又函数为奇函数,有

                                                        …………3分
(Ⅱ)

                                                …………3分
(n∈N*).                                    …………1分

  ①
   ②
①-②,得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,判断的奇偶性,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=loga(a>0且a≠1),f(2)=3,则f(-2)的值为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
己知函数,(Ⅰ)证明函数是R上的增函数;
(Ⅱ)求函数的值域.(Ⅲ)令.判定函数的奇偶性,并证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数,若,则下列不等式必定成立的是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=lg(
2
1-x
+a)是奇函数,则使f(x)<0的x的取值范围是(  )
A.(-1,0)B.(0,1)C.(-∞,0)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在(-1,f(-1))处的切线的斜率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ln(
1+9x2
-3x)-1,则f(x)+f(-x)=(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

判断函数的奇偶性          .

查看答案和解析>>

同步练习册答案