精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.

【答案】证明:(Ⅰ)∵四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,
BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点,
∴以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,
设PC=AD=2DC=2CB=2,
则C(0,1,0),D(0,0,0),P(1,0,1),E( ),A(2,0,0),B(1,1,0),
=( ), =(1,0,﹣1), =(0,1,﹣1),
设平面PAB的法向量 =(x,y,z),
,取z=1,得 =(1,1,1),
= =0,CE平面PAB,
∴CE∥平面PAB.
解:(Ⅱ) =(﹣1,1,﹣1),设平面PBC的法向量 =(a,b,c),
,取b=1,得 =(0,1,1),
设直线CE与平面PBC所成角为θ,
则sinθ=|cos< >|= = =
∴直线CE与平面PBC所成角的正弦值为

【解析】(Ⅰ)以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,利用向量法能证明CE∥平面PAB.
(Ⅱ)求出平面PBC的法向量和 ,利用向量法能求出直线CE与平面PBC所成角的正弦值.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对空间角的异面直线所成的角的理解,了解已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,圆O为△ABC的外接圆,过点C作圆O的切线交AB的延长线于点D,∠ADC的平分线交AC于点E,∠ACB的平分线交AD于点H.

(1)求证:CH⊥DE;
(2)若AE=2CE.证明:DC=2DB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为a的正方体OABC-O1A1B1C1中,E,F分别是AB,BC上的动点,且AE=BF,求证:A1F⊥C1E.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2x-3y)10的展开式中,:

(1)各项的二项式系数的和;

(2)奇数项的二项式系数的和与偶数项的二项式系数的和;

(3)各项系数之和;

(4)奇数项系数的和与偶数项系数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,AB=2,由顶点B沿棱柱侧面经过棱到顶点C1的最短路线与棱的交点记为M,求:

(Ⅰ)三棱柱的侧面展开图的对角线长.

(Ⅱ)该最短路线的长及的值.

(Ⅲ)平面与平面ABC所成二面角(锐二面角)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC中,AC=3,BC=4,AB=5,A=4.

(1)证明:

(2)求二面角的余弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,AB=AC=1,BAC=90°,异面直线A1B与B1C1所成的角为60°.

(1)求该三棱柱的体积;

(2)设D是BB1的中点,求DC1与平面A1BC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上存在关于直线对称的相异两点,则实数的取值范围是____

查看答案和解析>>

同步练习册答案