精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=2sin(ωx-$\frac{5π}{6}$)+2$\sqrt{3}$sinωx,(ω>0)周期T∈[π,2π],x=π为函数f(x)图象的一条对称轴,
(1)求ω;
(2)求f(x)的单调递增区间.

分析 (1)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性以及图象的对称性求得ω的值.
(2)利用正弦函数的单调性,求得f(x)的单调递增区间.

解答 解:(1)∵函数f(x)=2sin(ωx-$\frac{5π}{6}$)+2$\sqrt{3}$sinωx=2sinωx•(-$\frac{\sqrt{3}}{2}$)-2cosωx•$\frac{1}{2}$+2$\sqrt{3}$sinωx
=$\sqrt{3}$sinωx-cosωx=2sin(ωx-$\frac{π}{6}$)(ω>0)周期T=$\frac{2π}{ω}$∈[π,2π],∴1≤ω≤2.
∵x=π为函数f(x)图象的一条对称轴,∴ω•π-$\frac{π}{6}$=kπ+$\frac{π}{2}$,即ω=k+$\frac{2}{3}$,k∈Z,
∴ω=$\frac{5}{3}$.
(2)∵f(x)=2sin($\frac{5}{3}$x-$\frac{π}{6}$),令2kπ-$\frac{π}{2}$≤$\frac{5}{3}$x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得$\frac{6kπ}{5}$-$\frac{π}{5}$≤x≤$\frac{6kπ}{5}$+$\frac{2π}{5}$,
可得f(x)的调递增区间为[$\frac{6kπ}{5}$-$\frac{π}{5}$,$\frac{6kπ}{5}$+$\frac{2π}{5}$],k∈Z.

点评 本题主要考查三角恒等变换,正弦函数的周期性以及图象的对称性,正弦函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列说法中,正确的是(  )
①y+1=k(x-2)表示经过点(2,-1)的所有直线;
②y+1=k(x-2)表示经过点(2,-1)的无数条直线;
③直线y+1=k(x-2)恒过定点;
④直线y+1=k(x-2)不可能垂直于x轴.
A.①②③B.②③④C.①③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆的一般方程为x2+y2+6x+6=0,则圆的圆心和半径长分别是(  )
A.(1,1),$\sqrt{3}$B.(1,2),$\sqrt{3}$C.(3,0),3D.(-3,0),$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知直线x-y+1=0与曲线y=lnx-a相切,则a的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=$\sqrt{{{log}_{0.2}}x}$的定义域为(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某几何体的三视图如图所示,则该几何体的外接球的球面面积为5π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:?$x∈[\frac{1}{2},1],\frac{1}{x}$-a≥0,命题q:?x∈R,x2+2ax+2-a=0,若p∧q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知全集U={2,3,5},A={x|x2+bx+c=0}若∁UA={2}则b=-8,c=15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若复数z=$\frac{a+i}{1-i}$(a∈R)是纯虚数,则实数a的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案