精英家教网 > 高中数学 > 题目详情
10.已知圆C:x2+y2=25,过点M(-2,3)作直线l交圆C于A,B两点,分别过A,B两点作圆的切线,当两条切线相交于点N时,则点N的轨迹方程为2x-3y-25=0.

分析 设A(x1,y1),B(x2,y2),M(-2,3),因为AM与圆C相切,所以AM⊥CA,所以(x1+2)(x1-0)+(y1-3)(y1-0)=0,因为x12+y12=25,所以-2x1+3y1=25,同理-2x2+3y0=25.所以过点A,B的直线方程为-2x+3y=25.再由直线AB过点N(a,b),代入即可得到N的轨迹方程.

解答 解:圆C:x2+y2=25的圆心C为(0,0),
设A(x1,y1),B(x2,y2),M(-2,3),
因为AM与圆C相切,所以AM⊥CA.  
所以(x1+2)(x1-0)+(y1-3)(y1-0)=0,
即x12+2x1+y12-3y1=0,
因为x12+y12=25,
所以-2x1+3y1=25,
同理-2x2+3y2=25.
所以过点A,B的直线方程为-2x+3y=25.
因直线AB过点(a,b).
所以代入得-2a+3b=25,
所以点Q的轨迹方程为:2x-3y-25=0.
故答案为:2x-3y-25=0.

点评 本题考查的知识点是直线与圆的位置关系,考查切线的性质,直线方程,点与直线的位置关系,其中根据已知结合切线的性质,得到过点A,B的直线方程为-2x+3y=25,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别是$a,b,c,\frac{asinA+bsinB-csinC}{sinBsinC}=\frac{{2\sqrt{3}}}{3}a$.
(1)求角C;
(2)若△ABC的中线CD的长为1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式$\frac{x+1}{x}$≤3的解集是(-∞,0)∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.圆O的参数方程为$\left\{\begin{array}{l}x=-\frac{\sqrt{2}}{2}+rcosθ\\ y=-\frac{\sqrt{2}}{2}+rsinθ\end{array}$(θ为参数,r>0).
(Ⅰ)求圆O的圆心的极坐标(ρ≥0,0≤θ<2π );
(Ⅱ)当r为何值时,圆O上的点到直线l的最大距离为2+$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,满足${S_n}={S_{n-1}}+2{a_{n-1}}+1,({n≥2,n∈{N^*}})$,且a1=3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:$\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_n}+1}}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若x,y满足约束条件$\left\{\begin{array}{l}x-y+1≤0\\ x+y-3≥0\\ y≤4\end{array}\right.$则z=ax+y的最小值为1,则正实数a的值为(  )
A.10B.8C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P-ABC的四个顶点都在球O的球面上,则球O的表面积为(  )
A.B.12πC.20πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=2sin(\frac{π}{4}-2x)$,则函数f(x)的单调递减区间为(  )
A.$[{\frac{3π}{8}+2kπ,\frac{7π}{8}+2kπ}](k∈Z)$B.$[{-\frac{π}{8}+2kπ,\frac{3π}{8}+2kπ}](k∈Z)$
C.$[{\frac{3π}{8}+kπ,\frac{7π}{8}+kπ}](k∈Z)$D.$[{-\frac{π}{8}+kπ,\frac{3π}{8}+kπ}](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x,y满足$\left\{\begin{array}{l}x+y-2≥0\\ x-y+{m^2}≥0\\ x≤2\end{array}\right.$若目标函数z=-2x+y的最大值不超过2,则实数m的取值范围是(  )
A.(-2,2)B.[0,2]C.[-2,0]D.[-2,2]

查看答案和解析>>

同步练习册答案