精英家教网 > 高中数学 > 题目详情
18.设实数x,y满足x+$\frac{y}{4}$=1.
(1)若|7-y|<2x+3,求x的取值范围;
(2)若x>0,y>0,求证:$\sqrt{xy}$≥xy.

分析 (1)根据题意,由x+$\frac{y}{4}$=1,则y=4-4x,则|7-y|<2x+3,可得|4x+3|<2x+3,解可得x的范围,即可得答案;
(2)根据题意,由基本不等式可得1=x+$\frac{y}{4}$≥2$\sqrt{x•\frac{y}{4}}$=$\sqrt{xy}$,即$\sqrt{xy}$≤1,用作差法分析可得$\sqrt{xy}$-xy=$\sqrt{xy}$(1-$\sqrt{xy}$),结合$\sqrt{xy}$的范围,可得$\sqrt{xy}$-xy≥0,即可得证明.

解答 解:(1)根据题意,若x+$\frac{y}{4}$=1,则4x+y=4,即y=4-4x,
则由|7-y|<2x+3,可得|4x+3|<2x+3,
即-(2x+3)<4x+3<2x+3,
解可得-1<x<0;
(2)证明:x>0,y>0,1=x+$\frac{y}{4}$≥2$\sqrt{x•\frac{y}{4}}$=$\sqrt{xy}$,即$\sqrt{xy}$≤1,
$\sqrt{xy}$-xy=$\sqrt{xy}$(1-$\sqrt{xy}$),
又由0<$\sqrt{xy}$≤1,则$\sqrt{xy}$-xy=$\sqrt{xy}$(1-$\sqrt{xy}$)≥0,
即$\sqrt{xy}$≥xy.

点评 本题考查基本不等式、绝对值不等式的应用,关键是利用x+$\frac{y}{4}$=1分析变量x、y之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知f(x)为奇函数,函数f(x)与g(x)的图象关于直线y=x+1对称,若g(1)=4,则f(-3)=(  )
A.2B.-2C.-1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列选项中,说法正确的是(  )
A.命题“?x0∈R,x02-x0≤0”的否定为“?x∈R,x2-x>0”
B.若非零向量$\overrightarrow a$、$\overrightarrow b$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则$\overrightarrow a$与$\overrightarrow b$共线
C.命题“在△ABC中,A>30°,则sinA>$\frac{1}{2}$”的逆否命题为真命题
D.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的充分必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|(x-2)(x+6)>0},B={x|-3<x<4},则A∩B等于(  )
A.(-3,-2)B.(-3,2)C.(2,4)D.(-2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,且accosB-bccosA=3b2
(1)求$\frac{a}{b}$的值;
(2)若角C为锐角,c=$\sqrt{11}$,sinC=$\frac{2\sqrt{2}}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,若输出的结果是6,则判断框内m的取值范围是(  )
A.(30,42]B.(20,30)C.(20,30]D.(20,42)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.抛物线y2=4x上一点A到它焦点F的距离为4,则直线AF的斜率为$±\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)=|x-1|+|x+1|,(x∈R)
(Ⅰ)解不等式f(x)≤4;
(Ⅱ)若存在非零实数b使不等式f(x)≥$\frac{|2b+1|+|1-b|}{|b|}$成立,求负数x的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义域为R的偶函数f(x)满足?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(x+1)恰有三个零点,则a的取值范围是(  )
A.(0,$\frac{\sqrt{5}}{5}$)B.(0,$\frac{\sqrt{3}}{3}$)C.($\frac{\sqrt{5}}{5}$,$\frac{\sqrt{3}}{3}$)D.($\frac{\sqrt{6}}{6}$,$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

同步练习册答案