| A. | $\frac{3}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{3\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 运用是凸函数的定义,可得$\frac{1}{3}$[f(A)+f(B)+f(C)]≤f($\frac{A+B+C}{3}$),计算即可得到所求最大值,及等号成立的条件.
解答 解:由f(x)=sinx在(0,π)上是凸函数,
可得在△ABC中,$\frac{1}{3}$[f(A)+f(B)+f(C)]≤f($\frac{A+B+C}{3}$),
即有$\frac{1}{3}$(sinA+sinB+sinC)≤sin$\frac{π}{3}$,
即sinA+sinB+sinC≤3sin$\frac{π}{3}$=$\frac{3\sqrt{3}}{2}$.
当且仅当A=B=C=$\frac{π}{3}$时,取得等号.
则sinA+sinB+sinC的最大值是$\frac{3\sqrt{3}}{2}$.
故选:C.
点评 本题考查新定义的理解和运用,同时考查三角形的内角和定理,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{3}{2},3)$ | B. | (3,+∞) | C. | $(1,\frac{3}{2})$ | D. | ($\frac{3}{2}$,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若l∥α,l∥β,α∩β=m,则l∥m | B. | 若α⊥β,l⊥α,m⊥β则l⊥m | ||
| C. | 若α⊥β,α⊥γ,β∩γ=l,则l⊥α | D. | 若α∥β,l∥α,则l∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | 20 | D. | 4034 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | -2 | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{3}{2}$) | B. | (0,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com