精英家教网 > 高中数学 > 题目详情
18.已知互不重合的直线l,m,互不重合的平面α,β,给出下列四个命题,错误的命题是(  )
A.若l∥α,l∥β,α∩β=m,则l∥mB.若α⊥β,l⊥α,m⊥β则l⊥m
C.若α⊥β,α⊥γ,β∩γ=l,则l⊥αD.若α∥β,l∥α,则l∥β

分析 A.利用线面平行的判定与性质定理即可判断出正误;
B.利用线面面面垂直的性质定理即可判断出正误;
C.利用线面面面垂直的性质定理即可判断出正误;
D.利用线面平行的判定与性质定理即可判断出正误.

解答 解:A.由l∥α,l∥β,α∩β=m,利用线面平行的判定与性质定理可得:l∥m,正确;
B.由α⊥β,l⊥α,m⊥β,利用线面面面垂直的性质定理可得l⊥m,正确.
C.由α⊥β,α⊥γ,β∩γ=l,利用线面面面垂直的性质定理可得l⊥α,正确.
D.由α∥β,l∥α,则l∥β或l?β.因此不正确.
故选:D.

点评 本题考查了空间线面面面平行与垂直的判定与性质定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若圆$O:{x^2}+{y^2}=\frac{1}{4}$与抛物线y=mx2(m>0)的准线相切,则m的值为(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线xcosα+$\sqrt{3}$y+2=0的倾斜角的取值范围(  )
A.[0,$\frac{5π}{6}$]B.[$\frac{π}{6}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{5π}{6}$]C.[$\frac{π}{6}$,$\frac{5π}{6}$]D.[0,$\frac{π}{6}$]∪[$\frac{5π}{6}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列表示正确的是(  )
A.{1}∈{1,3}B.1⊆{1,2}C.∅∈{0}D.∅⊆∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知各项均为正数的数列{an}的前n项和为Sn,a1>1,且$6{S_n}={a_n}^2+3{a_n}+2$,n∈N*
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若${b_n}=\frac{{{a_n}-1}}{2^n}$,求数列的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={ x|$\frac{1}{x-1}$≥1},集合B={ x|log2x<1},则 A∩B=(  )
A.(-∞,2)B.(0,1)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“若f(x)在区间D上是凸函数,则对于区间D内的任意x1,x2,…,xn,有$\frac{1}{n}[{f({x_1})+f({x_2})++f(x_n^{\;})}]≤f(\frac{{{x_1}+{x_2}++{x_n}}}{n})$”设f(x)=sinx在(0,π)上是凸函数,则在△ABC中,sinA+sinB+sinC的最大值是(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.$\frac{{3\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{x^2}{16}-\frac{y^2}{9}=-1$的渐近线方程为(  )
A.$y=±\frac{3}{4}x$B.$y=±\frac{4}{3}x$C.$y=±\frac{16}{9}x$D.$y=±\frac{9}{16}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设Sn为数列{an}的前n项和,已知a1=2,对任意p、q∈N*,都有ap+q=ap+aq,则f(n)=$\frac{{S}_{n}+60}{n+1}$(n∈N*)的最小值为$\frac{29}{2}$.

查看答案和解析>>

同步练习册答案