分析 对任意p、q∈N*,都有ap+q=ap+aq,令p=n,q=1,可得an+1=an+a1,则${a}_{{n}_{+1}}$-an=2,利用等差数列的求和公式可得Sn.f(n)=$\frac{{S}_{n}+60}{n+1}$=$\frac{{n}^{2}+n+60}{n+1}$=n+1+$\frac{60}{n+1}$-1,令g(x)=x+$\frac{60}{x}$(x≥1),利用导数研究函数的单调性极值与最值即可得出.
解答 解:∵对任意p、q∈N*,都有ap+q=ap+aq,令p=n,q=1,可得an+1=an+a1,则${a}_{{n}_{+1}}$-an=2,
∴数列{an}是等差数列,公差为2.
∴Sn=2n+$\frac{n(n-1)}{2}×2$=n+n2.
则f(n)=$\frac{{S}_{n}+60}{n+1}$=$\frac{{n}^{2}+n+60}{n+1}$=n+1+$\frac{60}{n+1}$-1,
令g(x)=x+$\frac{60}{x}$(x≥1),则g′(x)=1-$\frac{60}{{x}^{2}}$=$\frac{{x}^{2}-60}{{x}^{2}}$,可得x∈[1,$\sqrt{60}$时,函数g(x)单调递减;x∈$[\sqrt{60},+∞)$时,函数g(x)单调递增.
又f(7)=14+$\frac{1}{2}$,f(8)=14+$\frac{2}{3}$.
∴f(7)<f(8).
∴f(n)=$\frac{{S}_{n}+60}{n+1}$(n∈N*)的最小值为$\frac{29}{2}$.
故答案为:$\frac{29}{2}$.
点评 本题考查了等差数列的通项公式与求和公式、利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若l∥α,l∥β,α∩β=m,则l∥m | B. | 若α⊥β,l⊥α,m⊥β则l⊥m | ||
| C. | 若α⊥β,α⊥γ,β∩γ=l,则l⊥α | D. | 若α∥β,l∥α,则l∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{3}{2}$) | B. | (0,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | P∧Q | B. | (¬P)∧Q | C. | (¬P)∧(¬Q) | D. | P∧(¬Q) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com