精英家教网 > 高中数学 > 题目详情
7.函数y=$\frac{1}{2}$sin($\frac{2}{3}$x+$\frac{π}{4}$)的单增区间为[3kπ-$\frac{9π}{8}$,3kπ+$\frac{3π}{8}$],k∈z.

分析 由条件利用正弦函数的增区间求得函数y=$\frac{1}{2}$sin($\frac{2}{3}$x+$\frac{π}{4}$)的单增区间.

解答 解:对于函数y=$\frac{1}{2}$sin($\frac{2}{3}$x+$\frac{π}{4}$),令2kπ-$\frac{π}{2}$≤$\frac{2}{3}$x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈z,
求得3kπ-$\frac{9π}{8}$≤x≤3kπ+$\frac{3π}{8}$,故函数的增区间为[3kπ-$\frac{9π}{8}$,3kπ+$\frac{3π}{8}$],k∈z,
故答案为:[3kπ-$\frac{9π}{8}$,3kπ+$\frac{3π}{8}$],k∈z.

点评 本题主要考查正弦函数的增区间,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2及椭圆的短轴端点为顶点的三角形是等边三角形,椭圆的右顶点到右焦点的距离为1
(Ⅰ)求椭圆E的方程:
(Ⅱ)如图,直线l与椭圆E有且只有一个公共点M,且交于y轴于点P,过点M作垂直于l的直线交y轴于点Q,求证:F1,Q,F2,M,P五点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的程序框图的输出结果是(  )
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为抛物线y2=8x的焦点,椭圆的离心率为$\frac{\sqrt{3}}{2}$,直线l过点E(-1,0)且与椭圆C交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)△MON的面积是否存在最大值,若存在,求出△MON面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知四边形ABCD内接于半径为3的圆,且AB是圆的直径,过点D的圆的切线与BA的延长线交于点M,∠BMD的平分线分别交AD、BD于点E、F,AC、BD交于点P.
(Ⅰ)证明:DE=DF;
(Ⅱ)若DM=3$\sqrt{3}$,AP=2CP=2$\sqrt{3}$,求BP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,满足a1=2,Sn+2=2an,n∈N+
(Ⅰ)求an
(Ⅱ)求证$\frac{{a}_{1}}{({a}_{1}+1)({a}_{2}+1)}+\frac{{a}_{2}}{({a}_{2}+1)({a}_{3}+1)}$+…+$\frac{{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}<\frac{1}{3}$
(Ⅲ)设b1,b2,…,b2015是数列a1,a2,…,a2015的任意一个排列,求(${a}_{1}+\frac{1}{{b}_{1}}$)$({a}_{2}+\frac{1}{{b}_{2}})…({a}_{2015}+\frac{1}{{b}_{2015}})$的最大值,并说明何时取到等号.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=x2-4x-2lnx+5的零点个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.阅读如图所示的程序框图,则输出的A的值是(  )
A.15B.21C.28D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设数列{an}为等比数列,其中a4=2,a5=5,阅读如图所示的程序框图,运行相应的程序,则输出结果s为4.

查看答案和解析>>

同步练习册答案