精英家教网 > 高中数学 > 题目详情
20.对于R上的可导函数f(x),若a>b>1且有(x-1)f′(x)≥0,则必有(  )
A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)

分析 由不等式,通过分类讨论可以得出f(x)的单调性,即可得出f(a),f(b),f(1)的大小关系.

解答 解:由(x-1)f′(x)≥0可以得知,
若(x-1)f′(x)>0,则有以下两种情况:
①当x>1时,有f′(x)>0;
②当x<1时,有f′(x)<0,
∴可以得知当x>1时,f(x)单调递增,当x<1时,f(x)单调递减,
∵a>b>1,
∴f(a)>f(b)>f(1)
∴f(a)+f(b)>2f(1),
而当(x-1)f′(x)=0时,可以得知,f(a)=f(b)=f(1),
∴f(a)+f(b)=2f(1),
综上,可得f(a)+f(b)≥2f(1),
故选:C.

点评 本题考查不等式的理解,通过得出f(x)的单调性,考察学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设向量$\overrightarrow{a}$=(1,-1),$\overrightarrow{b}$=(4,3).则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值为$\frac{{\sqrt{2}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a,b∈R+且ab2=4,则a+3b的最小值为(  )
A.3$\root{3}{7}$B.6C.3$\root{3}{9}$D.3$\root{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线x=2a与双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)相交A,B两点,O为坐标原点,若△AOB是正三角形,则双曲线的离心率是(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{13}}}{3}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{\sqrt{11}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A{x|x2-2x≥0},B{x|0≤1gx<2},则(∁RA)∩B是(  )
A.{x|2≤x<10}B.{x|x≥2}C.{x|1≤x<2}D.{x|0<x<10}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.a∈R,“$\frac{1}{a}$<1”是“a>1”的必要不充分条件
B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件
C.命题“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命题p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,则¬p是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设x>0,求证:x2+$\frac{2}{x}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若f(x+2)=$\left\{\begin{array}{l}{tanx,x≥0}\\{lo{g}_{2}(-x),x<0}\end{array}\right.$,则f($\frac{π}{4}$+2)•f(-2)=(  )
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某地地震,为了安置广大灾民,抗震救灾指挥部决定建造一批简易房(每套长方体状,房高2.5米),前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即:钢板的高均为2.5米,用钢板的长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元.房顶用其它材料建造,每平方米材料费为200元.每套房建筑面积100平方米,试计算:
(1)设房前面墙的长为x,两侧墙的长为y,所用材料费为p,试用x,y表示p;
(2)求简易房造价S的最小值是多少?并求S最小时,前面墙的长度应设计为多少米?

查看答案和解析>>

同步练习册答案