精英家教网 > 高中数学 > 题目详情
15.已知集合A{x|x2-2x≥0},B{x|0≤1gx<2},则(∁RA)∩B是(  )
A.{x|2≤x<10}B.{x|x≥2}C.{x|1≤x<2}D.{x|0<x<10}

分析 利用补集的定义求出集合A的补集,利用交集的定义求出(∁RA)∩B.

解答 解:由x2-2x≥0,即x(x-2)≥0,解得x≤0或x≥2,
∴A={x|x≤0或x≥2},
∴∁RA={x|0<x<2},
由lg1=0≤1gx<2=lg100,
∴1≤x<100,
∴B={x|1≤x<100},
∴(∁RA)∩B={x|1≤x<2},
故选:C.

点评 本题考查利用交集、补集、并集的定义进行集合的交、并、补的混合运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知圆x2+y2-2kx-2y=0与直线x+y=2k相切,则k等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an},a2=3,a3+a5=14.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{$\frac{1}{{{a_n}•{a_{n+1}}}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.变量x,y满足不等式$\left\{{\begin{array}{l}{{{(x-a)}^2}+{{(y-a)}^2}≤5}\\{{{(x-a)}^2}-{{(y-a)}^2}≥0}\end{array}}\right.$,其中a为常数,当2x+y的最大值为2时,则a=(  )
A.$\frac{7}{3}$B.-1C.$\frac{7}{3}$或-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow{a}$=(x,3),$\overrightarrow{b}$=(-1,y-1),且$\overrightarrow{a}$+2$\overrightarrow{b}$=(0,1),则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对于R上的可导函数f(x),若a>b>1且有(x-1)f′(x)≥0,则必有(  )
A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a,b,c>0,若abc=a+b+c,且$\frac{1}{b}$+$\frac{1}{c}$=2,则abc的最小值为(  )
A.1B.6C.8D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin($\frac{x}{3}$-φ)(A>0,0<φ<$\frac{π}{2}$)的最大值为2,其图象经过点M(π,1)
(1)求函数f(x)的单调递减区间;
(2)设α,β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的各项均为正数,a1=1,an+1-an=ak(k∈{1,2,…,n})
(Ⅰ)求证:an+1-an≥1;
(Ⅱ)设数列{an}的前n项和为Sn,求证:$\frac{1}{2}$n(n+1)≤Sn≤2n-1.

查看答案和解析>>

同步练习册答案