分析 (I)利用数列的单调性即可证明;
(Ⅱ)根据数列的单调性求得数列{an}的最大值及最小值,利用“累加求和”与不等式的性质即可得出.
解答 解:(Ⅰ)证明:∵an+1-an=ak>0(k∈{1,2,…,n}),
∴数列{an}是递增数列,即1<a2<a3<…<an.
又∵ak+1-ak=ak≥1(k∈{1,2,…,n}),
∴ak+1-ak≥1(k=1,2,3,…,n-1).
(Ⅱ)证明:∵当n=1时,2=a2=2,
当n≥2时,数列{an}是递增数列,
∴an+1-an=an时,取最大值,即an+1=2an时,
由等比数列通项公式可知:an=2n-1时,
当an+1-an=a1时取最小值,即an+1-an=1,
由等差数列通项公式可知:an=n,
∴1=a1=1,2=a2=2,3≤a3≤22,4≤a4≤23,…n≤an≤2n-1,
由上面n个式子相加,得到:1+2+3+…+n≤a1+a2+a3+…+an≤1+2+22+23+…+2n-1,
$\frac{n(n+1)}{2}$≤Sn≤$\frac{1-{2}^{n}}{1-2}$,
∴$\frac{1}{2}$n(n+1)≤Sn≤2n-1.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推关系的应用、“累加求和”、不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|2≤x<10} | B. | {x|x≥2} | C. | {x|1≤x<2} | D. | {x|0<x<10} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overline{x}$+a,s | B. | a$\overline{x}$,s2 | C. | a2$\overline{x}$,s2+a | D. | $\overline{x}$+a2,s+a2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com