精英家教网 > 高中数学 > 题目详情
5.已知数列{an}的各项均为正数,a1=1,an+1-an=ak(k∈{1,2,…,n})
(Ⅰ)求证:an+1-an≥1;
(Ⅱ)设数列{an}的前n项和为Sn,求证:$\frac{1}{2}$n(n+1)≤Sn≤2n-1.

分析 (I)利用数列的单调性即可证明;
(Ⅱ)根据数列的单调性求得数列{an}的最大值及最小值,利用“累加求和”与不等式的性质即可得出.

解答 解:(Ⅰ)证明:∵an+1-an=ak>0(k∈{1,2,…,n}),
∴数列{an}是递增数列,即1<a2<a3<…<an
又∵ak+1-ak=ak≥1(k∈{1,2,…,n}),
∴ak+1-ak≥1(k=1,2,3,…,n-1).
(Ⅱ)证明:∵当n=1时,2=a2=2,
当n≥2时,数列{an}是递增数列,
∴an+1-an=an时,取最大值,即an+1=2an时,
由等比数列通项公式可知:an=2n-1时,
当an+1-an=a1时取最小值,即an+1-an=1,
由等差数列通项公式可知:an=n,
∴1=a1=1,2=a2=2,3≤a3≤22,4≤a4≤23,…n≤an≤2n-1
由上面n个式子相加,得到:1+2+3+…+n≤a1+a2+a3+…+an≤1+2+22+23+…+2n-1
$\frac{n(n+1)}{2}$≤Sn≤$\frac{1-{2}^{n}}{1-2}$,
∴$\frac{1}{2}$n(n+1)≤Sn≤2n-1.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推关系的应用、“累加求和”、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合A{x|x2-2x≥0},B{x|0≤1gx<2},则(∁RA)∩B是(  )
A.{x|2≤x<10}B.{x|x≥2}C.{x|1≤x<2}D.{x|0<x<10}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用求商比较法证明:当a>2,b>2时,a+b<ab.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设集合A={x|x2-3x+2=0},B={x|2x2-ax+2=0},若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sin(π-α)-cos(π-α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).求下列各式的值:
(1)sinα•cosα;
(2)sinα-cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某地地震,为了安置广大灾民,抗震救灾指挥部决定建造一批简易房(每套长方体状,房高2.5米),前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即:钢板的高均为2.5米,用钢板的长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元.房顶用其它材料建造,每平方米材料费为200元.每套房建筑面积100平方米,试计算:
(1)设房前面墙的长为x,两侧墙的长为y,所用材料费为p,试用x,y表示p;
(2)求简易房造价S的最小值是多少?并求S最小时,前面墙的长度应设计为多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆C:x2+y2-(6-2m)x-4my+5m2-6m=0,则圆心C的轨迹方程为2x+y-6=0,直线l经过点(-1,1),若对任意的实数m,直线l被圆C截得的弦长都是定值,则直线l的一般式方程为2x+y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,点A,B是圆x2+y2-6x+5=0上的两个动点,且满足$|AB|=2\sqrt{3}$,则$|\overrightarrow{OA}+\overrightarrow{OB}|$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x1,x2,x3,…,xn的平均数为$\overline{x}$,标准差为s,则x1+a,x2+a,…,xn+a的平均数和标准差分别为(  )
A.$\overline{x}$+a,sB.a$\overline{x}$,s2C.a2$\overline{x}$,s2+aD.$\overline{x}$+a2,s+a2

查看答案和解析>>

同步练习册答案