精英家教网 > 高中数学 > 题目详情
17.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率等于$\frac{{\sqrt{5}}}{2}$,且点$({\sqrt{5},\frac{1}{2}})$在双曲线C上,则双曲线C的方程为(  )
A.$\frac{y^2}{16}-\frac{x^2}{4}=1$B.${y^2}-\frac{x^2}{4}=1$C.$\frac{y^2}{4}-{x^2}=1$D.$\frac{x^2}{4}-{y^2}=1$

分析 由双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率等于$\frac{{\sqrt{5}}}{2}$,且点$({\sqrt{5},\frac{1}{2}})$在双曲线C上,知$\left\{\begin{array}{l}{\frac{{a}^{2}+{b}^{2}}{{a}^{2}}=\frac{5}{4}}\\{\frac{5}{{a}^{2}}-\frac{{y}^{2}}{\frac{1}{4}}=1}\end{array}\right.$,由此能求出双曲线C的标准方程.

解答 解:∵双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率等于$\frac{{\sqrt{5}}}{2}$,且点$({\sqrt{5},\frac{1}{2}})$在双曲线C上,
∴$\left\{\begin{array}{l}{\frac{{a}^{2}+{b}^{2}}{{a}^{2}}=\frac{5}{4}}\\{\frac{5}{{a}^{2}}-\frac{{y}^{2}}{\frac{1}{4}}=1}\end{array}\right.$,
解得:a2=4,b2=1,
∴双曲线C的标准方程为$\frac{{x}^{2}}{4}-{y}^{2}$=1.
故选D.

点评 本题考查双曲线的标准方程的求法,解题时要认真审题,仔细解答,注意双曲线的简单性质的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知f(x+1)=x2-2x,
(1)求f(3);
(2)求f(x)及f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a∈R,函数f(x)=x3-ax2+ax+a,g(x)=f(x)+(a-3)x.
(1)求证:曲线y=f(x)在点(1,f(x))处的切线过定点;
(2)若g(1)是g(x)在区间(0,3]上的极大值,但不是最大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=(16x-16-x)log2|x|的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在某次物理实验中,得到一组不全相等的数据x1,x2,x3,…,xn,若a是这组数据的“代表”,必须使$\sum_{i=1}^{n}$(xi-a)2最小,则a的值是$\frac{1}{n}$$\sum_{i=1}^{n}$xi

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算:$\lim_{n→∞}\frac{{n-3{n^2}}}{{5{n^2}+1}}$=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于任意实数x,[x]表示不超过x的最大整数,如[-0,2]=-1,[1.72]=1,已知${a_n}=[{\frac{n}{3}}]({n∈{N^*}}),{S_n}$为数列{an}的前项和,则S2017=677712.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(sinx+cosx)2+2cos2x(x∈R).
(Ⅰ)求函数f(x)的最大值及相应的x取值;
(Ⅱ)该函数的图象可以由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线l1:ax+4y-c=0与直线l2:6x+8y+3=0平行,且l1与圆M:x2+(y+c)2=1相切,则c的值为(  )
A.±1B.±$\sqrt{2}$C.±2D.±3

查看答案和解析>>

同步练习册答案