精英家教网 > 高中数学 > 题目详情
9.对于任意实数x,[x]表示不超过x的最大整数,如[-0,2]=-1,[1.72]=1,已知${a_n}=[{\frac{n}{3}}]({n∈{N^*}}),{S_n}$为数列{an}的前项和,则S2017=677712.

分析 利用n∈N*,an=[$\frac{n}{3}$],可得S3n=3[0+1+2+…+(n-1)]+n=$\frac{3}{2}$n2-$\frac{n}{2}$,由2017=3×672+1,即可求得S2016,由a2017=672,S2017=S2016+a2017,即可求得S2017

解答 解:∵n∈N*,an=[$\frac{n}{3}$],
∴n=3k,k∈N*时,a3k=k;
n=3k+1,k∈N时,a3k+1=k;
n=3k+2,k∈N时,a3k+2=k.
S3n=3[0+1+2+…+(n-1)]+n=3×$\frac{[1+(n+1)](n-1)}{2}$=$\frac{3}{2}$n2-$\frac{n}{2}$,
由2017=3×672+1,
∴S2016=S3×672=$\frac{3}{2}$×6722-$\frac{672}{2}$=677040,
a2017=672,
S2017=S2016+a2017=677040+672=677712,
故答案为:677712.

点评 本题主要考查数列与函数的综合运用,主要涉及了数列的推导与归纳,是新定义题,应熟悉定义,将问题转化为已知去解决,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=|x+m|-|x+2|,若不等式f(x)+x≤0的解集为A,且[-1,1]⊆A,则实数m的取值范围为(  )
A.(-1,1)B.[-1,1]C.(-1,1]D.[-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合M={x|x2<2x},N={x|log2(x-1)≤0},则M∩N=(  )
A.(1,2)B.(1,2]C.[1,2)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率等于$\frac{{\sqrt{5}}}{2}$,且点$({\sqrt{5},\frac{1}{2}})$在双曲线C上,则双曲线C的方程为(  )
A.$\frac{y^2}{16}-\frac{x^2}{4}=1$B.${y^2}-\frac{x^2}{4}=1$C.$\frac{y^2}{4}-{x^2}=1$D.$\frac{x^2}{4}-{y^2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合M={x∈N|x<6},N={x|x2-11x+18<0},则M∩N等于(  )
A.{3,4,5}B.{x|2<x<6}C.{x|3≤x≤5}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若将函数$y=sin({2x+\frac{π}{3}})$的图象向右平移m(m>0)个单位长度,所得函数图象关于y轴对称,则m的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ax3+bx2+c过点(0,2),其导函数f'(x)的图象如图所示,则a+b+c=$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.非零向量$\overrightarrow a,\overrightarrow b$,原命题:若夹角为锐角则$|{\overrightarrow a+\overrightarrow b}|>|{\overrightarrow a-\overrightarrow b}|$,则原命题与逆命题的真假为(  )
A.真真B.假假C.真假D.假真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=f(x)和y=f(x-2)都是偶函数,且f(3)=3,则f(-5)=3.

查看答案和解析>>

同步练习册答案