分析 (1)求出函数的导数,计算f′(1),f(1),求出求出方程,从而求出定点即可;
(2)求出g(x)的导数,根据g(1)是g(x)在区间(0,3]上的极大值,不是最大值,得到关于a的不等式,解出即可.
解答 (1)证明:∵f'(x)=3x2-2ax+a,∴f'(1)=3-a…(1分)
∵f(1)=a+1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y-(a+1)=(3-a)(x-1),…(2分)
即a(x-2)=3x-y-2,令x=2,则y=4,
故曲线y=f(x)在点(1,f(1))处的切线过定点(2,4)…(3分)
(2)解:g'(x)=f'(x)+a-3=3x2-2ax+2a-3=(x-1)[3x-(2a-3)],
令g'(x)=0得x=1或$x=\frac{2a-3}{3}$…(4分)
∵g(1)是g(x)在区间(0,3]上的极大值,∴$\frac{2a-3}{3}>1$,∴a>3…(5分)
令g'(x)>0,得x<1或$x>\frac{2a-3}{3},g(x)$递增;令g'(x)<0,得$1<x<\frac{2a-3}{3},g(x)$递减,
∵g(1)不是g(x)在区间(0,3]上的最大值,
∴g(x)在区间(0,3]上的最大值为g(3)=18-2a,…(6分)
∴g(3)=18-2a>g(1)=2a-2,∴a<5,又a>3,∴3<a<5…(7分)
点评 本题考查了函数的单调性、极值、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若a⊥α,b∥β,a⊥b,则α⊥β | B. | 若a⊥α,b∥β,a∥b,则α∥β | ||
| C. | 若a⊥α,a∥β,则α⊥β | D. | 若a∥β,b∥β,则α∥b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | [-1,1] | C. | (-1,1] | D. | [-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0$<\frac{r}{L}<\frac{1}{2}$ | B. | $\frac{1}{2}≤\frac{r}{L}<1$ | C. | 0$<\frac{r}{L}<\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}≤\frac{r}{L}<1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$f(-$\frac{π}{3}$)<f($\frac{π}{4}$) | B. | $\sqrt{2}$f(-$\frac{π}{3}$)<f(-$\frac{π}{4}$) | C. | f(0)$>\sqrt{2}$f(-$\frac{π}{4}$) | D. | f($\frac{π}{4}$)$<\sqrt{3}$f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,2] | C. | [1,2) | D. | (0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{y^2}{16}-\frac{x^2}{4}=1$ | B. | ${y^2}-\frac{x^2}{4}=1$ | C. | $\frac{y^2}{4}-{x^2}=1$ | D. | $\frac{x^2}{4}-{y^2}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 真真 | B. | 假假 | C. | 真假 | D. | 假真 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com