精英家教网 > 高中数学 > 题目详情
18.设a,b是不同的直线,α、β是不同的平面.下列命题中正确的是(  )
A.若a⊥α,b∥β,a⊥b,则α⊥βB.若a⊥α,b∥β,a∥b,则α∥β
C.若a⊥α,a∥β,则α⊥βD.若a∥β,b∥β,则α∥b

分析 对4个选项分别进行判断,即可得出结论.

解答 解:对于A,b?α时,α,β可以平行,故不正确;
对于B,a⊥α,a∥b,则b⊥α,∵b∥β,∴α⊥β,故不正确;
对于C,∵a∥β,∴平面β中必存在一条直线b与直线a平行,∵a⊥α,∴直线b⊥平面β,∴α⊥β,正确;
对于D,若a∥β,b∥β,则α∥b,或a,b相交、异面,故不正确.
故选C.

点评 本题主要考查线面与面面平行以及垂直的判定定理以及性质定理,是对课本知识的综合考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知p:方程x2+mx+1=0有两个不等的正实根;q:方程4x2+4(m-2)x+1=0无实数根.若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}<\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}≤{a}_{n}<1)}\end{array}\right.$,若a1=$\frac{6}{7}$,则a2014的值为(  )
A.$\frac{5}{7}$B.$\frac{6}{7}$C.$\frac{3}{7}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=3x+cos(x+φ),x∈R,则“φ=$\frac{π}{2}$”是“函数f(x)为奇函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列四种说法:
①函数y=ax(a>0,且a≠1)与函数y=log1ax(a>0,且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$与y=$\frac{(1+{2}^{x})^{2}}{x•{2}^{x}}$均是奇函数;
④函数y=(x-1)2与y=2x-1在(0,+∞)上都是增函数.
其中正确说法的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a2+4b2=1,则2a2+4ab的最大值为$\sqrt{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知锐角△ABC中的三个内角分别为A,B,C.
(1)设$\overrightarrow{BC}•\overrightarrow{CA}=\overrightarrow{CA}•\overrightarrow{AB}$,判断△ABC的形状;
(2)设向量$\overrightarrow s=(2sinC,-\sqrt{3})$,$\overrightarrow t=(cos2C,2{cos^2}\frac{C}{2}-1)$,且$\overrightarrow s∥\overrightarrow t$,若$sinA=\frac{1}{3}$,求$sin(\frac{π}{3}-B)$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x+1)=x2-2x,
(1)求f(3);
(2)求f(x)及f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a∈R,函数f(x)=x3-ax2+ax+a,g(x)=f(x)+(a-3)x.
(1)求证:曲线y=f(x)在点(1,f(x))处的切线过定点;
(2)若g(1)是g(x)在区间(0,3]上的极大值,但不是最大值,求实数a的取值范围.

查看答案和解析>>

同步练习册答案